2023年电赛-E题-运动目标控制与自动追踪系统

仅个人思路,未做实物

基本要求

1-(1)初始化好原点坐标,控制舵机运动即可

1-(2)建议把红色激光云台位置固定好,屏幕大小已经有确切的数据,可以直接写死,让云台运动

1-(3)

第一个方法:

在openmv中文官方教程中,有一教程是利用四元检测算法来识别矩形,四元检测算法同样被用来识别AprilTag.四元检测算法,可以识别任意大小、角度的矩形。函数返回一个rect对象的列表。

rect.corners()
返回一个有四个元组的列表,每个元组代表矩形的四个顶点(x, y).从左上角的顶点开始,按照顺时针排序。

rect.rect()
返回检测到的矩形的外接长方形的(x, y, w, h)。

rect.magnitude()
返回检测到矩形的大小。

# Find Rects Example
#
# 这个例子展示了如何使用april标签代码中的四元检测代码在图像中找到矩形。 四元检测算法以非常稳健的方式检测矩形,并且比基于Hough变换的方法好得多。 例如,即使镜头失真导致这些矩形看起来弯曲,它仍然可以检测到矩形。 圆角矩形是没有问题的!
# (但是,这个代码也会检测小半径的圆)...

import sensor, image, time

sensor.reset()
sensor.set_pixformat(sensor.RGB565) # 灰度更快(160x120 max on OpenMV-M7)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time = 2000)
clock = time.clock()

while(True):
    clock.tick()
    img = sensor.snapshot()

    # 下面的`threshold`应设置为足够高的值,以滤除在图像中检测到的具有
    # 低边缘幅度的噪声矩形。最适用与背景形成鲜明对比的矩形。

    for r in img.find_rects(threshold = 10000):
        img.draw_rectangle(r.rect(), color = (255, 0, 0))
        for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0))
        print(r)

    print("FPS %f" % clock.fps())

得到四点坐标,选取其一点开始用激光笔顺着胶带跑

第二个方法:

寻找最大色块,得到x,y,w,h四个数据,即可确定矩形,这个方法可能不适用1-(4)

import sensor, image, time
sensor.reset() 
sensor.set_pixformat(sensor.RGB565) 
sensor.set_framesize(sensor.QQVGA) 
sensor.skip_frames(time = 2000)
sensor.set_auto_whitebal(False) 
clock = time.clock() 

def find_max(blobs):
    max_size=0
    for blob in blobs:
        if blob[2]*blob[3] > max_size:
            max_blob=blob
            max_size = blob[2]*blob[3]
    return max_blob

while(True):
	clock.tick()
	img = sensor.snapshot()
	blobs = img.find_blobs([black_threshold]) 
	max_blob = find_max(blobs)  
	max_blob.x()  
	max_blob.y()  
	max_blob.w()  
	max_blob.h()  

1-(4)个人认为用1-(3)的方法依旧可行

发挥部分

2-(1)这一部分和追小球的云台很相似

main.py

import sensor, image, time

from pid import PID
from pyb import Servo

pan_servo=Servo(1)
tilt_servo=Servo(2)

pan_servo.calibration(500,2500,500)
tilt_servo.calibration(500,2500,500)

red_threshold  = (13, 49, 18, 61, 6, 47)

pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
#pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
#tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID

sensor.reset() # Initialize the camera sensor.
sensor.set_pixformat(sensor.RGB565) # use RGB565.
sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
sensor.skip_frames(10) # Let new settings take affect.
sensor.set_auto_whitebal(False) # turn this off.
clock = time.clock() # Tracks FPS.

def find_max(blobs):
    max_size=0
    for blob in blobs:
        if blob[2]*blob[3] > max_size:
            max_blob=blob
            max_size = blob[2]*blob[3]
    return max_blob


while(True):
    clock.tick() # Track elapsed milliseconds between snapshots().
    img = sensor.snapshot() # Take a picture and return the image.

    blobs = img.find_blobs([red_threshold])
    if blobs:
        max_blob = find_max(blobs)
        pan_error = max_blob.cx()-img.width()/2
        tilt_error = max_blob.cy()-img.height()/2

        print("pan_error: ", pan_error)

        img.draw_rectangle(max_blob.rect()) # rect
        img.draw_cross(max_blob.cx(), max_blob.cy()) # cx, cy

        pan_output=pan_pid.get_pid(pan_error,1)/2
        tilt_output=tilt_pid.get_pid(tilt_error,1)
        print("pan_output",pan_output)
        pan_servo.angle(pan_servo.angle()+pan_output)
        tilt_servo.angle(tilt_servo.angle()-tilt_output)

pid.py

from pyb import millis
from math import pi, isnan
 
class PID:
    _kp = _ki = _kd = _integrator = _imax = 0
    _last_error = _last_derivative = _last_t = 0
    _RC = 1/(2 * pi * 20)
    def __init__(self, p=0, i=0, d=0, imax=0):
        self._kp = float(p)
        self._ki = float(i)
        self._kd = float(d)
        self._imax = abs(imax)
        self._last_derivative = float('nan')
 
    def get_pid(self, error, scaler):
        tnow = millis()
        dt = tnow - self._last_t
        output = 0
        if self._last_t == 0 or dt > 1000:
            dt = 0
            self.reset_I()
        self._last_t = tnow
        delta_time = float(dt) / float(1000)
        output += error * self._kp
        if abs(self._kd) > 0 and dt > 0:
            if isnan(self._last_derivative):
                derivative = 0
                self._last_derivative = 0
            else:
                derivative = (error - self._last_error) / delta_time
            derivative = self._last_derivative + \
                                     ((delta_time / (self._RC + delta_time)) * \
                                        (derivative - self._last_derivative))
            self._last_error = error
            self._last_derivative = derivative
            output += self._kd * derivative
        output *= scaler
        if abs(self._ki) > 0 and dt > 0:
            self._integrator += (error * self._ki) * scaler * delta_time
            if self._integrator < -self._imax: self._integrator = -self._imax
            elif self._integrator > self._imax: self._integrator = self._imax
            output += self._integrator
        return output
    def reset_I(self):
        self._integrator = 0
        self._last_derivative = float('nan')

2-(2)和之前几问挺相似的

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知死活的我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值