TensorFlow2.0入门到进阶2.17 —— 超参数搜索sklearn封装keras模型及超参数搜索

1、理论原理

超参数搜索:
https://blog.csdn.net/caoyuan666/article/details/105933836

2、sklearn封装keras模型

  • 1、转化为sklearn的model
  • 2、定义参数集合
  • 3、搜索参数
def build_model(hidden_layers = 1,
                layer_size = 30,
                learning_rate = 3e-3):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(layer_size,activation='relu',
                                input_shape=x_train_scaled.shape[1:]))
    for _ in range(hidden_layers-1):
        model.add(keras.layers.Dense(layer_size,
                                    activation='relu'))
    model.add(keras.layers.Dense(1))
    optimizer = keras.optimizers.SGD(learning_rate)
    model.compile(loss='mse',optimizer=optimizer)
    return model

sklearn_model=keras.wrappers.scikit_learn.KerasRegressor(build_model)
callbacks=[keras.callbacks.EarlyStopping(patience=5,min_delta=1e-2)]

history=sklearn_model.fit(x_train_scaled,y_train,
         epochs=10,
         validation_data=(x_valid_scaled,y_valid),
         callbacks = callbacks )

3、sklearn超参数搜索

对于学习率,采用一个分布,只需给定最小值和最大值,具体数字在这个区间随意 选取

  • f(x)= 1/(x*log(b/a)) a<=x<=b
from scipy.stats import reciprocal
param_distribution = {
    "hidden_layers":[1,2,3,4],
    "layer_size":np.arange(100),
    "learning_rate":reciprocal(1e-4,1e-2)
}

from sklearn.model_selection import RandomizedSearchCV
#n_iter:从参数集合中选取多少组
#n_jobs:多少个任务并行处理
random_search_cv = RandomizedSearchCV(sklearn_model,
                                    param_distribution,
                                    n_iter=10,
                                    cv = 4,
                                    n_jobs=1)
random_search_cv.fit(x_train_scaled,y_train,
                    epochs=10,
                    validation_data=(x_valid_scaled,y_valid),
                    callbacks = callbacks)

RandomizedSearchCV
详见论文:Random Search for Hyper-Parameter Optimization
考察其源代码,其搜索策略如下:

  • (a)对于搜索范围是distribution的超参数,根据给定的distribution随机采样;
  • (b)对于搜索范围是list的超参数,在给定的list中等概率采样;
  • (c)对a、b两步中得到的n_iter组采样结果,进行遍历。
  • (补充)如果给定的搜索范围均为list,则不放回抽样n_iter次。

参数:

  • sklearn_model:之前定义好的sklearn模型,在上一章代码中
  • param_distribution:超参数字典
  • n_iter:从参数集合中选取多少组
  • n_jobs:多少个任务并行处理
  • cv:将训练集平均分为n份,n-1份用来训练,一份用来测试,这里可以通过参数cv调整,默认为3,即n=3

4、结果显示

print(random_search_cv.best_params_)
print(random_search_cv.best_score_)
print(random_search_cv.best_estimator_)

查看最好参数,最好得分

{'hidden_layers': 4, 'layer_size': 5, 'learning_rate': 0.004605738848316287}
-0.4479178825629158
<tensorflow.python.keras.wrappers.scikit_learn.KerasRegressor object at 0x000001B68BB68548>

通过最好模型来预测测试集:

model = random_search_cv.best_estimator_.model
model.evaluate(x_test_scaled,y_test)
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力改掉拖延症的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>