TensorFlow2.0入门到进阶
该专栏主要介绍Google工程师在慕课网的课程《TensorFlow2.0入门到进阶》的笔记以及知识点
努力改掉拖延症的小白
一个从大厂跳进国企的程序员
展开
-
TensorFlow2.0入门到进阶3.5 —— 自定义损失函数(含完整神经网络房价预测代码)
在之前的实际应用中,一般直接使用了其内置的损失函数,但是有些时候我们需要根据我们的实际需求自定义损失函数,这一节将详细讲解文章目录1. 自定义损失函数详解2.完整代码实践2.1 加载所需包2.2 加载房屋价格预测数据集2.3 查看数据集信息2.4 划分训练集、测试集和验证集2.5 数据标准化2.6 创建模型(包括自定义损失函数)2.7 训练模型2.8 查看结果1. 自定义损失函数详解先上代码:def customized_mse(y_true,y_test): return tf.red.原创 2020-08-07 21:24:28 · 1478 阅读 · 0 评论 -
TensorFlow2.0入门到进阶3.4 ——稀疏张量tf.SparseTensor与变量tf.Variable
文章目录1.稀疏张量tf.SparseTensor1.1 定义1.2 创建1.3 运算1.4 转换为密集矩阵2. 变量tf.Variable2.1 创建2.2 重新复制1.稀疏张量tf.SparseTensor1.1 定义是否还记得上一级中:基础数据类型API之strings与ragged_tensor中的ragged_tensor其实就是允许含有0元素的张量,但是,这种变量所有0都在非零数字的后面,那如果很多0穿插在张量中间怎么办?为此,引入了稀疏张量tf.SparseTensor(何为稀疏,就是很原创 2020-07-29 22:17:25 · 3143 阅读 · 0 评论 -
TensorFlow2.0入门到进阶3.3 —— 基础数据类型API之strings与ragged_tensor
文章目录1、strings1.1 strings是什么?1.2 tf.strings 的优点是什么?1、strings1.1 strings是什么?看到strings,这个不是字符串吗?没错,它在这里的作用就是字符串,那tensorflow为什么还要单独拿出来呢,Python已经有字符串了呀!其实,加入tf.strings的其中一个重要的作用是可以使字符串成为TensorFlow的第一公民,可以直接加入到模型的输入中,这对NLP领域是很有用的1.2 tf.strings 的优点是什么?之前在NL原创 2020-07-28 21:44:27 · 629 阅读 · 0 评论 -
TensorFlow2.0入门到进阶3.2 —— 基础数据类型API之常量(constant)
文章目录1、张量2、常量(constant)3、实践代码3.1创建常量3.2 常量基本计算3.3 和numpy之间的转换3.4 0维度1、张量有没有小伙伴和我一样,TensorFlow中tensor是什么意思?张量,那张量又是什么意思?TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.张量的阶在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个原创 2020-05-22 23:05:07 · 1109 阅读 · 0 评论 -
TensorFlow2.0入门到进阶3.1 —— 基础API引入
1、本章主要内容2、tf.function的使用3、API列表原创 2020-05-05 18:28:42 · 314 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.17 —— 超参数搜索sklearn封装keras模型及超参数搜索
文章目录1、理论原理2、sklearn封装keras模型3、sklearn超参数搜索4、结果显示1、理论原理超参数搜索:https://blog.csdn.net/caoyuan666/article/details/1059338362、sklearn封装keras模型1、转化为sklearn的model2、定义参数集合3、搜索参数def build_model(hidden...原创 2020-05-05 18:13:24 · 1190 阅读 · 12 评论 -
TensorFlow2.0入门到进阶2.16 —— 手动实现超参数搜索
文章目录1、理论原理2、代码1、理论原理超参数搜索:https://blog.csdn.net/caoyuan666/article/details/1059338362、代码这里手动实现网格搜索,其实就是提前设立几个参数,通过for函数来实现。#learning_rate[1e-4,3e-4,1e-3,3e-3,1e-2,3e-2]#w = w + grad * learning_...原创 2020-05-05 16:19:47 · 458 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.15 —— 超参数搜索
文章目录1、超参数2、为什么要超参数搜索3、搜索策略3.1 网格搜索3.2 随机搜索3.3 遗传算法搜索3.4 启发式搜索1、超参数超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,在机器学习过程中需要对超参数进行优化,给学习器选择一组最优超参数,以提高学习的性能和效果。比如,树的数量或树的深度,学习率(多种模式)以及k均值聚类中的簇数等都是超参数。与超参数区...原创 2020-05-05 16:13:26 · 1064 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.14 —— wide&deep模型多输入多输出
文章目录1、wide&deep理论及前期博客2、多输入3、多输出1、wide&deep理论及前期博客wide&deep模型:https://blog.csdn.net/caoyuan666/article/details/105869670函数API实现wide&deep模型子类API实现wide&deep模型2、多输入本实验使用数据为房价预测的...原创 2020-05-05 15:24:53 · 1576 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.13 —— 子类API实现wide&deep模型
文章目录1、wide&deep原理2、代码1、wide&deep原理wide&deep模型:https://blog.csdn.net/caoyuan666/article/details/1058696702、代码官方手册:https://tensorflow.google.cn/api_docs/python/tf/keras/Modelkeras.mode...原创 2020-05-05 11:46:05 · 874 阅读 · 1 评论 -
TensorFlow2.0入门到进阶2.12 ——函数API实现wide&deep模型
文章目录1、wide&deep原理2、代码1、wide&deep原理wide&deep模型:https://blog.csdn.net/caoyuan666/article/details/1058696702、代码函数式API 在创建模型时就像调用函数一样,将上一层结果像函数变量一样输入的下一层的函数中:#复合函数:f(x)=h(g(x))input = k...原创 2020-05-05 10:39:48 · 913 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.11 —— wide&deep模型
文章目录1、简介1、简介原创 2020-05-05 09:43:47 · 1693 阅读 · 1 评论 -
TensorFlow2.0入门到进阶2.10 —— 批归一化、dropout、激活函数
文章目录1、批归一化2、dropout3、激活函数3.1 原理部分:3.2 各直观图像激活函数3.3 代码1、批归一化原理部分:一文轻松搞懂Keras神经网络(理论+实战)批归一化其实就是在每经过一层神经网络训练后,将训练结果重新归一化,从而为经过下一层神经网络提过一个良好的数据,消除量纲的影响。代码: model.add(keras.layers.BatchNormalization()...原创 2020-04-30 21:06:22 · 4206 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.9 —— 实战深度神经网络
文章目录1、写在前面2、深度神经网络3、举个栗子1、写在前面有人会问,2.88在哪呢?其实2.8是一些基础理论知识,这一部分在2.1已经介绍的很详细了,如果不了解看看2.1吧。这里说个知识点吧:dropout通俗来说,就是将训练好的十分复杂的神经网络,去除一部分连接,如下图所示。那么有人会问,这么费劲训练好的网络,为什么还要去掉一部分连接?这主要是为了提高训练模型的泛化能力。一般在...原创 2020-04-30 20:30:07 · 1595 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.7 —— 一个房价预测回归项目轻松入门TensorFlow
之前已经介绍了一个服装分类项目:https://blog.csdn.net/caoyuan666/article/details/105390193本项目同样将用采用sklearn自带的数据集,带大家轻松入门TensorFlow的回归问题。开发环境:tensorflow 2.0.0sklearn 0.21.3文章目录1、导入所需模块2、加载数据集3、查看数据4、划分数据集5、数据归一化6...原创 2020-04-11 12:59:20 · 1144 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.6 —— 回调函数
文章目录1、回调定义:2、函数种类3、常用函数详解3.1 earlystopping3.2 modelcheckpoint3.3 tensorboard3.4 程序举例1、回调定义:在模型训练期间的某些点调用的实用程序。2、函数种类class BaseLogger:累积指标的时期平均值的回调。class CSVLogger:将纪元结果流式传输到csv文件的回调。class ...原创 2020-04-08 17:40:25 · 2317 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.4 —— 归一化实现
归一化有多种,最常用的就是最大最小值和正态分布归一化,下面将介绍如何利用sklearn来实现数据归一化。# x=(x-u)/std 符合正态分布from sklearn.preprocessing import StandardScaler#之前x_train为np.int型,所以先转为float32scaler = StandardScaler()x_train_scaled ...原创 2020-04-08 17:12:15 · 2316 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.3 —— 一个服装分类项目轻松入门TensorFlow
本项目将用采用sklearn自带的数据集,带大家轻松入门TensorFlow。开发环境:tensorflow 2.0.0sklearn 0.21.3文章目录1、导入所需模块2、加载数据集3、数据查看4、创建训练模型(神经网络)5、查看模型(神经网络)6、模型训练7、结果观察1、导入所需模块首先,导入所需模块,并打印各个模块的版本号等信息,有些模块本节可能未涉及到,但是未来会用,这里也先...原创 2020-04-08 16:35:58 · 1802 阅读 · 11 评论 -
TensorFlow2.0入门到进阶2.2 —— one-hot编码与常用损失函数
文章目录1、one-hot编码1.1 为什么要编码1.2 one-hot编码1.3 one-hot编码过程详解1.4 one-hot编码程序实现2、损失函数2.1分类问题2.1.1 交叉熵2.1.2 均方误差损失(MSE)2.1.3 均方根误差(RMSE)2.2 回归问题2.2.1 均方误差(MSE)2.2.1 平均绝对值误差(也称L1损失)1、one-hot编码1.1 为什么要编码对于离...原创 2020-04-08 16:01:38 · 2054 阅读 · 0 评论 -
TensorFlow2.0入门到进阶2.1 —— 一文轻松搞懂Keras神经网络(理论+实战)
欢迎进入TensorFlow2.0入门到进阶的第二章内容,这一章将主要讲解利用tf.keras的实战部分。本节主要是对tf.keras的简要介绍。文章目录1、理论部分1.1 TensorFlow-Keras简介1.1.1 Keras1.1.2 tf-keras和keras相同点1.1.3 tf-keras和keras不同点1.2 分类问题、回归1.2.1 分类1.2.2 回归:1.3 目标函数、...原创 2020-04-08 12:09:18 · 2667 阅读 · 11 评论 -
TensorFlow2.0入门到进阶1.6 —— tensorflow环境配置让你少走弯路
文章目录1、最简单2、virtual env3、云端配置3.1 原因3.2 主流云环境3.3 说明1、最简单最简单的TensorFlow环境配置方式,没有之一,那就是在win环境安装Anaconda ,利用Anaconda 自带的Anaconda Navigator安装TensorFlow,如下图所示:这里还可以根据开发者需求更改TensorFlow的版本:在安装好TensorFlow之...原创 2020-03-16 19:12:44 · 648 阅读 · 1 评论 -
TensorFlow2.0入门到进阶1.5 —— 最通俗易懂的Tensorflow 与 pytourch对比
文章目录1、前言2、入门时间3、机制4、全面性5、序列化6、部署7、自定义扩展1、前言很多人在学习深度学习时,都会对于学习哪个深度学习的框架而烦恼,到底是Tensorflow 还是 pytourch?一个主流的说法就是如果搞学术研究,那么就选择pytourch,如果是搞项目那就选Tensorflow ,但很多人都纠结两者的区别在哪里呢,下面就具体的分析一下,看看到底哪个框架适合你。2、入门时...原创 2020-03-16 18:04:51 · 2007 阅读 · 2 评论 -
TensorFlow2.0入门到进阶1.4 —— 一文读懂TensorFlow2.0构架
文章目录1、TensorFlow2.0主要特征2、架构2.1 read &preprocess data2.2 tf.keras2.3 Premade Estimators2.4 distribution strategy2.5 SaveModel3、开发流程4、强大的跨平台能力5、 强大的研究实验1、TensorFlow2.0主要特征tf.keras和eager mode更加简单...原创 2020-03-16 17:36:09 · 1655 阅读 · 10 评论 -
TensorFlow2.0入门到进阶 —— 1.3一文读懂TensorFlow版本变迁与tf1.0架构
文章目录TensorFlow1.01.1XLA:Accelerate linear algebra1.2 更高级别API1.3支持docker镜像DockerTensorFlow Docker 要求2、tensorflow1.0架构高层封装TensorFlow1.01.1XLA:Accelerate linear algebraTensorFlow 的设计目标和核心优势之一是其灵活性。Te...原创 2020-03-11 20:33:11 · 1355 阅读 · 0 评论 -
TensorFlow2.0入门到进阶 —— 1.2TensorFlow是什么?
文章目录1、Google开源软件库2、数据流图3、特征1、Google开源软件库1、采用数据流图,用于数值计算2、支持GPU、CPU3、最初用于深度学习,如今越来越通用2、数据流图节点:处理数据线:节点间的输入输出线上运输张量(数据,可以是向量、矩阵、高维矩阵)节点分配到各种计算设备上运行3、特征1、高度的灵活性2、真正的可移植性3、产品与科研结合4、自动求微分(...原创 2020-03-11 20:10:38 · 391 阅读 · 0 评论 -
TensorFlow2.0入门到进阶 —— 1.1前言:整体内容介绍
文章目录1、前言2、主要内容3、PS1、前言TensorFlow是谷歌2015年开源的通用高性能计算库。最初主要是为构建神经网络(NNs)提供高性能的API。然而,随着时间的推移和机器学习(ML)社区的兴起,TensorFlow已经发展为一个完整的机器学习生态系统。2019年6月发布了TensorFlow 2.0测试版之后,Google于周一宣布了其最终版本。该版本与Keras紧密集成,默认...原创 2020-03-11 20:06:03 · 860 阅读 · 0 评论