最受欢迎的7个Python解释器

在这里插入图片描述

Python是计算机培训和软件开发中最受欢迎的编程语言之一。Python易于入门,没有编程知识的初学者或新手也可以从Python开始。Python在机器学习和深度学习算法研究及应用上具备压倒性的优势,在数据分析领域也越来越流行。

什么是python解释器?

根据定义,解释器是一种直接执行用某种编程或脚本语言编写的指令的计算机程序。直接执行,是指它不需要先将指令编译成机器语言程序。
在这里插入图片描述

现在有许多Python解释器。其中许多非常有用,Python开发者应该了解它们。在这里,我们列出了 7个最佳 Python 解释器:

1. CPython

CPython官网链接
CPython是Python编程语言最常用的解释器, 也是Python默认的解释器,这意味着你不需要下载任何使用CPython的东西,因为任何使用Python的人都可以访问它。
CPython很受欢迎,因为它提供了与C以及其他编程语言的外部函数接口。它还会在解释代码之前将给定的 Python 代码转换为字节码。
此外,如果您愿意为使用Python编程语言开发的任何程序接触最广泛的受众群体,CPython是必须的解释器, 因此 Python 所有版本都支持它。

2. PyPy

Pypy icon 官网链接

PyPy是Python编程语言的一个令人印象深刻的兼容替代实现。PyPy具有JIT编译器,并支持C,CLI和JVM后端。如果您期待提高某些特定 Python 代码的性能,那么 PyPy 最适合您,因为它是 PyPy 的主要目标之一,即增强 Python 代码的性能以及与 CPython 实现的最大兼容性,关键是使用简单。
PyPy支持Python 2.7,Python 3.5以及Python 3.6版本。

3. Cython

在这里插入图片描述官网链接

Cython是Python编程语言(基于Pyrex)的优化静态编译器。它使得 Python 编写 C 扩展就像 Python 本身一样简单。可以利用C的特性,避开GIL全局锁的限制,有效地提升 python 代码的性能。如果你很在意性能,而且对C/C++有基本的了解,或者需要使用python做硬件相关的开发,那么Cython是非常理想的选择,可以同时发挥Python开发的高效率与C/C++出色的运行性能的优势,因此Cython也是笔者强烈推荐,值得尝试的编译器
最高支持python 3.10版本, cythonr兼容性非常好,只有非常有限的语句不支持。

4. Stackless Python

在这里插入图片描述官网链接

Stackless Python是一个Python解释器。从名称上就表示,它是“无堆栈”的,因为它不依赖于 C 调用的堆栈。
与CPython类似,Stackless Python也是使用C和Python编程语言编写的。
Stackless Python 提供了大量的支持功能,例如对线程、通信、协程、轮询调度、预编译二进制文件、任务序列化和 tasklet 的支持。
Stackless Python 具有一个名为微线程的功能,有助于避免与传统操作系统线程相关的大部分开销。Stackless Python 最高支持 Python 3.7 版本。

5. Jython

在这里插入图片描述
官网链接
以前被认为是JPython,是在Java平台上运行的Python的另一个实现。
Jython是用Java和Python编程语言编写的。它将Python代码转换为Java字节码,还允许Python代码在任何支持JVM的机器上运行。
它为静态和动态编译提供支持。Jython的独特之处在于它允许导入以及使用任何Java类,如Python模块。
Jython最高受Python 2.7版本支持。

6. IronPython

在这里插入图片描述官网链接

IronPython用C#编程语言编写的。
IronPython允许您与 Microsoft.NET 框架集成,从而允许您同时使用.NET和Python库。
它是在动态语言基础结构 (DLR) 和公共语言基础结构之上实现的,允许动态类型和动态方法调度等,用于动态语言。
IronPython 最高支持 Python 3.4 版本。

7. Numba,

在这里插入图片描述官网链接

是一个Python扩展,具有基于LLVM编译器基础结构的语言子集的JIT编译器(可能以其clang C编译器而闻名)。它主要针对使用NumPy应用代码进行优化。
优点:具有运行时优化的 JIT 编译
缺点:语言支持有限,运行时依赖性(LLVM)相对较大,性能表现不稳定
最高支持python3.9版本

结论

列出的 7 个最佳 Python 解释器,你需要分析项目的内部与外部条件,综合评估后,选择适合你的解释器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值