第六章
一、Gauss列主元消元法
1.用列主元消元法解方程组:
二、矩阵的Crout分解和Doolittle分解
1.用 Doolittle(即 LU)分解法求解如下线性方程组:
2.用Crout分解法求解下列线性方程组。
3.矩阵的Doolittle分解式为
答案:
4.矩阵的Crout分解式为
答案:
三、Jacobi迭代格式及其收敛性
对于方程组 AX = y,构造雅可比迭代式
。当迭代矩阵B的谱半径P<1时,迭代收敛,这是收敛的充要条件.迭代矩阵的某范数||B||<1,是迭代收敛的充分条件。当方程组的系数矩阵 A 具有某些特殊性质时,可直接判定由它生成的雅可比迭代矩阵是收敛的.
定理6.1 若方程组AX = y的系数矩阵A 满足下列条件之一,则其雅可比迭代收敛:
1.设线性代数方程组Ax=b的系数矩阵为
试求能使Jacobi方法收敛的a的取值范围。
2.设线性代数方程组Ax=b的系数矩阵为
其中a为实数,试求能使Jacobi方法收敛的a的取值范围。
四、Gauss-Seidel的迭代格式及其收敛性
判断Gauss-Seidel迭代收敛与判断雅可比迭代收敛的方法类似。一方面从Gauss-Seidel迭代矩阵S获取信息,当p(s)<1或S的某种范数||S||<1时,Gauss-Seidel迭代收敛;另一方面,有时可直接根据方程组系数矩阵的特点做岀判断。
定理6.2 若方程组系数矩阵为列或行严格对角优的,则Gauss-Seidel迭代收敛。
定理6.3 若方程组系数矩阵为对称正定矩阵,则Gauss-Seidel迭代收敛。
3.构造求解下列方程组必收敛的 Gauss-Seidel 迭代格式,并说明收敛的理由。
第七章
一、Lagrange插值多项式(三次),误差余项
1.已知的函数表如下,利用二次Lagrange插值多项式求
的近似值,并估计误差。
2.已知sin(x)的函数表如下,用二次Lagrange插值多项式,求sin0.63891的值,并估计误差。
二、Newton插值多项式(三次),误差余项
1.设, 则其七阶差商
2.设 f(-1) = 0, f(0) = 1, f(1) = -2 ,则过这三点的二次插值多项式中 的系数为
答案:-2
三、Hermite插值多项式(三次),误差余项
1.求一个次数不超过 3 的多项式,满足下列插值条件:
并写出其余项的表达式。
方法一:
方法二:推广Newton插值法
2.给定数据f(0)=1,f'(0)=0.5,f(1)=2,f'(1)=0.5。构造一个次数不超过3次的多项式H(x),计算 f(0.5)的近似值,并写出余项f(x)-H(x)的表达式。
四、最小二乘法原理,一次多项式(线性)拟合
1.设有实验数据
按最小二乘法求一次多项式进行拟合。
五、按最小二乘原理解矛盾方程组
1.按最小二乘原理,求解下列矛盾方程组:
2.按最小二乘原理,求解下列矛盾方程组:
第8章 数值微分和数值积分
一、求积公式的代数精度
1.求积公式,具有_____次代数精度。
答案:1
2.n个结点的插值型求积公式至少具有_______次代数精度,n 个结点的Gauss型求积公式具有_______次代数精度。
答案:n-1 ; 2n-1
有的题目问的是n+1个结点,注意别搞混了。
3.中矩形求积公式的代数精度为______次,截断误差为_______( f(x) 充分光滑)
答案:1
本题第二空是高等工程数学张韵华版教材185页第二题第二问。
此外,常见的求积公式中,左矩形、右矩形求积公式的代数精度为0;梯形公式的代数精度为1(这是高等工程数学张韵华版第一版教材168页的原话)。
4.牛顿-科茨数值求积公式,当n为奇数时,至少____次代数精度;当n为偶数时,至少具有____次代数精度.
答案:n ; n+1
这是高等工程数学张韵华版第一版教材169页的原话。
5.n个结点的所有求积公式中,具有最高代数精度的是________求积公式。
答案:Gauss型
6. 求积公式,具有_____次代数精度。
答案:3
二、插值型求积公式:梯形公式和辛普森公式
1.分别用梯形公式和Simpson公式计算积分的近似值,并估计截断误差。
2.分别用梯形公式和Simpson公式计算积分的近似值,并估计梯形公式的截断误差。
三、复化梯形公式和复化辛普森公式
1.用复化梯形公式计算,使其截断误差不超过0.01。
2.给定定积分
(1)利用复化梯形公式计算上述积分值,使其截断误差不超过0.5×。
(2)取同样的求积节点,改用复化辛普森公式时,截断误差是多少?
(3)要求截断误差不超过,若用复化辛普森公式,应取多少个函数值?
(4)利用复化辛普森公式计算上述积分值,使其截断误差不超过0.5×。
四、区间逐次分半的复化梯形公式
1.用逐次分半的复化梯形公式计算,使截断误差不超过0.005。
2.用逐次分半的复化梯形公式计算,使截断误差不超过
。
3.用逐次分半的复化梯形公式计算,使其截断误差不超过0.01。
第9章 常微分方程数值解
一、显式欧拉法
2.用Euler方法求解常微分方程初值问题
的计算公式为____________,其中 h = 0.1 。
3.用Euler方法求解常微分方程初值问题
的计算公式为____________,其中 h = 0.1 。
第10章 迭代法
一、简单迭代法及其收敛性
1.证明方程在[0,0.5]上有唯一正根和迭代
对任意初值[0,0.5]收敛。
二、Newton法及其收敛性
1.写出求方程的根的Newton迭代格式,并说明收敛理由。
可),并说明收敛的理由。

在附近的根。
5.给定方程,
1)证明方程在区间(1,2)内仅有一个根;
2)写出求方程在区间(1,2)内根的 Newton 法迭代公式,并说明收敛的理由。