高等工程数学第6-10章大题总结(数值计算)

本篇主要总结了高等工程数学张韵华版第6-10章,即数值计算部分的重点大题题型。答案仅供参考

第六章

一、Gauss列主元消元法

1.用列主元消元法解方程组:

二、矩阵的Crout分解和Doolittle分解

1.用 Doolittle(即 LU)分解法求解如下线性方程组:

2.用Crout分解法求解下列线性方程组。

3.矩阵的Doolittle分解式为

答案:

4.矩阵的Crout分解式为

答案:

三、Jacobi迭代格式及其收敛性

对于方程组 AX = y,构造雅可比迭代式X^{^{(k+1)}}=BX^{(k)}+g。当迭代矩阵B的谱半径P<1时,迭代收敛,这是收敛的充要条件.迭代矩阵的某范数||B||<1,是迭代收敛的充分条件。当方程组的系数矩阵 A 具有某些特殊性质时,可直接判定由它生成的雅可比迭代矩阵是收敛的.
定理6.1 若方程组AX = y的系数矩阵A 满足下列条件之一,则其雅可比迭代收敛:

1.设线性代数方程组Ax=b的系数矩阵为

试求能使Jacobi方法收敛的a的取值范围。

2.设线性代数方程组Ax=b的系数矩阵为

其中a为实数,试求能使Jacobi方法收敛的a的取值范围。

四、Gauss-Seidel的迭代格式及其收敛性

判断Gauss-Seidel迭代收敛与判断雅可比迭代收敛的方法类似。一方面从Gauss-Seidel迭代矩阵S获取信息,当p(s)<1或S的某种范数||S||<1时,Gauss-Seidel迭代收敛;另一方面,有时可直接根据方程组系数矩阵的特点做岀判断。
定理6.2 若方程组系数矩阵为列或行严格对角优的,则Gauss-Seidel迭代收敛。
定理6.3 若方程组系数矩阵为对称正定矩阵,则Gauss-Seidel迭代收敛。

1.构造收敛的Gauss- Seidel 迭代格式(不计算),并说明收敛的理由。

2.构造收敛的 Gauss-Seidel 迭代格式(不计算),并说明收敛的理由。

3.构造求解下列方程组必收敛的 Gauss-Seidel 迭代格式,并说明收敛的理由。 

4.构造求解下列方程组必收敛的 GS 迭代格式,并说明收敛的理由。

第七章

一、Lagrange插值多项式(三次),误差余项

1.已知f(x)=2^x的函数表如下,利用二次Lagrange插值多项式求2^{0.4}的近似值,并估计误差。

 2.已知sin(x)的函数表如下,用二次Lagrange插值多项式L_2(x),求sin0.63891的值,并估计误差。 

二、Newton插值多项式(三次),误差余项

1.设f(x)=6x^7+11x^4+3, 则其七阶差商f[2^0, 2^1 , ..., 2^7 ]=

2.设 f(-1) = 0, f(0) = 1, f(1) = -2 ,则过这三点的二次插值多项式中 x_2 的系数为

答案:-2

三、Hermite插值多项式(三次),误差余项

1.求一个次数不超过 3 的多项式H_3 (x),满足下列插值条件:

并写出其余项的表达式。

方法一:

方法二:推广Newton插值法

2.给定数据f(0)=1,f'(0)=0.5,f(1)=2,f'(1)=0.5。构造一个次数不超过3次的多项式H(x),计算 f(0.5)的近似值,并写出余项f(x)-H(x)的表达式。

四、最小二乘法原理,一次多项式(线性)拟合

1.设有实验数据

按最小二乘法求一次多项式进行拟合。

五、按最小二乘原理解矛盾方程组

 1.按最小二乘原理,求解下列矛盾方程组:

2.按最小二乘原理,求解下列矛盾方程组:

第8章 数值微分和数值积分

一、求积公式的代数精度

1.求积公式,具有_____次代数精度。

答案:1

2.n个结点的插值型求积公式至少具有_______次代数精度,n 个结点的Gauss型求积公式具有_______次代数精度。

答案:n-1 ; 2n-1

有的题目问的是n+1个结点,注意别搞混了。

3.中矩形求积公式的代数精度为______次,截断误差为_______( f(x) 充分光滑)

答案:1    

本题第二空是高等工程数学张韵华版教材185页第二题第二问。

此外,常见的求积公式中,左矩形、右矩形求积公式的代数精度为0;梯形公式的代数精度为1(这是高等工程数学张韵华版第一版教材168页的原话)。

4.牛顿-科茨数值求积公式,当n为奇数时,至少____次代数精度;当n为偶数时,至少具有____次代数精度.
答案:n  ;  n+1

这是高等工程数学张韵华版第一版教材169页的原话。

5.n个结点的所有求积公式中,具有最高代数精度的是________求积公式。

答案:Gauss型

6. 求积公式,具有_____次代数精度。

答案:3

二、插值型求积公式:梯形公式和辛普森公式

1.分别用梯形公式和Simpson公式计算积分\int _{1}^{2} e^\frac{1}{x}dx的近似值,并估计截断误差。

2.分别用梯形公式和Simpson公式计算积分\int _{1/2}^{1} \sqrt{x}dx的近似值,并估计梯形公式的截断误差。

三、复化梯形公式和复化辛普森公式

1.用复化梯形公式计算,使其截断误差不超过0.01。

2.给定定积分\int _{0}^{1} \frac{sinx}{x}dx

(1)利用复化梯形公式计算上述积分值,使其截断误差不超过0.5×10^{-3}

(2)取同样的求积节点,改用复化辛普森公式时,截断误差是多少?

(3)要求截断误差不超过10^{-6},若用复化辛普森公式,应取多少个函数值?

(4)利用复化辛普森公式计算上述积分值,使其截断误差不超过0.5×10^{-6}

四、区间逐次分半的复化梯形公式

1.用逐次分半的复化梯形公式计算\int _{0}^{1} \frac{sinx}{x}dx,使截断误差不超过0.005。

2.用逐次分半的复化梯形公式计算\int _{1}^{3} \frac{1}{x}dx,使截断误差不超过10^{-2}

3.用逐次分半的复化梯形公式计算,使其截断误差不超过0.01。

第9章 常微分方程数值解

一、显式欧拉法

1.试写出用 Euler 法求解初值问题:

的计算公式,取步长 h =  0.1 ,写出计算结果。

2.用Euler方法求解常微分方程初值问题

的计算公式为____________,其中 h = 0.1 。

3.用Euler方法求解常微分方程初值问题

的计算公式为____________,其中 h = 0.1 。

第10章 迭代法

一、简单迭代法及其收敛性

1.证明方程x^3-3x+1=0在[0,0.5]上有唯一正根和迭代

对任意初值x_0 \in[0,0.5]收敛。

二、Newton法及其收敛性

1.写出求方程x=5-2^x的根的Newton迭代格式,并说明收敛理由。

(这道题方程的根约为1.715621)
2.写出计算 \sqrt{a}(a>0) 的 Newton 迭代格式,用它求 \sqrt{2}的近似值(计算一步求出 x_1
可),并说明收敛的理由。

3.用Newton法求非线性方程 x+sinx=1的根(计算一步求出 即可),并说明收敛的理由。

4.取s=0.01,用 Newton法求方程

附近的根。

5.给定方程(x-1)e^x=1,
1)证明方程在区间(1,2)内仅有一个根;
2)写出求方程在区间(1,2)内根的 Newton 法迭代公式,并说明收敛的理由。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钻仰弥坚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值