高等工程数学笔记

第一章 线性空间与线性变换

线性空间

线性空间的特点

(1)元素的运算之间具有封闭性
(2)元素与数域的运算仍具有封闭性
(3)上述运算满足各种分配率、结合律、交换律等

集合V构成数域P上的线性空间

条件
default:加法与数乘运算封闭

123记作
(1)V的所有元素为(2)每个数都属于P P n P^n Pn
(1)V的所有元素为矩阵(2)矩阵的所有元素都来自P P m ∗ n P^{m*n} Pmn
(1)V的所有元素为多项式(2)多项式的系数属于P(3)未定元t的最高次小于n P [ t ] n P[t]_n P[t]n
(1)V的元素为函数(2)函数的定义域为[a,b] (a<=t<=b)(3)函数为实值连续函数R[a,b]

线性空间的基

基的特点:
(1)为一个向量组
(2)向量组线性无关
(3)可表示V中的其他任一向量(线性表出)
(4)V的维数基向量组的向量个数
推论:若V的维数为n,则任意n个线性无关向量构成一组基
方法论:如何判断某一线性空间的维度
找出线性空间的一组线性无关的元素(极大线性无关组),能线性表出任一其他元素即可

基变换与坐标变换

什么是基?
能线性表出其他任一向量的线性无关的一个向量组
什么是坐标?
基在线性表出其他向量时每个向量前面的系数数组
什么是基变换?
把一组基变为另一组基
说明:
从矩阵的角度看:已知一组基为一组向量,多个向量在一起就拼成了一个矩阵,要由一个矩阵变为另外一个矩阵,则要乘上一个矩阵A,此时这个A即为基变换矩阵。
从元素的角度看:要把一组基变为另外一组基,已知另外一组基中的每个元素都能由现在的基线性表出,那么每个元素都由原基线性表出,此时的系数便组成了一个矩阵,即为基变换矩阵,原基( e 1 , e 2 … … e n e_1,e_2……e_n e1,e2en)*A即得到新基
什么是坐标变换?
设x是线性空间的一个元素(向量),可以由基线性表出,系数数组即为坐标,当原基右乘一个矩阵A后,坐标该如何变换使得x不变?
解:
原x=原基( e 1 , e 2 … … e n e_1,e_2……e_n e1,e2en)*坐标数组
此时右边基变成了( e 1 , e 2 … … e n e_1,e_2……e_n e1,e2en)*A,只有把坐标数组变为 “ A − 1 A^{-1} A1*坐标数组” 即可消去原基右乘的A,保持右边不变
此时, A − 1 A^{-1} A1即为坐标变换矩阵

思考题:基变换矩阵A是否可逆?

证:
设V是数域P上的n维线性空间,E与E`为两组基构成的矩阵,基变换矩阵为A,则E`=E*A

因为E`与E都为基==》线性无关==》矩阵满秩==》(E`)=r(E)>=max(m,n)>=n
E`=E*A==》r(E*A)=r(E`)=r(E)>=n
因为 n<=r(E*A)<=r(A)
==》r(A)>=n
==》r(A)=n
==》A可逆

上面麻烦了,其实r(E)就=n,因为向量组的秩就是极大线性无关组中向量的个数,即基中向量的个数,即线性空间的维数
=》r(A)>=r(E*A)=n=》r(A)=n

子空间与维数定理

定理

线性空间V的非空子集W是子空间的充要条件是:W中的两个运算是封闭的(加法与数乘)

和集的概念

V 1 + V 2 = { x + y ∣ x ∈ V 1 , y ∈ V 2 } V_1+V_2=\{x+y|x\in{V_1},y\in{V_2}\} V1+V2={x+yxV1,yV2}
也就是说,和集是两个集合中的元素各自相加后的结果集合,不是并集
子空间的和集也是子空间

思考题: V 1 ∪ V 2 V_1\cup{V_2} V1V2 是V的子空间吗?

答:不一定
子空间必须满足运算封闭的条件
即 若 x 1 ∈ V 1 ∪ V 2 , x 2 ∈ V 1 ∪ V 2 必 有 x 1 + x 2 ∈ V 1 ∪ V 2 即若x_1\in{V_1\cup{V_2}}, x_2\in{V_1\cup{V_2}}\\ 必有x_1+x_2\in{V_1\cup{V_2}} x1V1V2,x2V1V2x1+x2V1V2
PS:怎么表示一个子空间?

可以用一个函数的集合来表示子空间:
A ( 2 ) = { a + b 2 ∣ a , b ∈ Q } A(\sqrt{2})=\{a+b\sqrt{2}|a,b\in{Q}\} A(2 )={a+b2 a,bQ}
则表示一个线性空间

对于本题,举个反例,两个子空间,加法不封闭即可
eg.
在这里插入图片描述
这 里 2 和 3 都 属 于 V 1 ∪ V 2 , 但 他 们 相 加 却 不 属 于 , 即 得 证 这里\sqrt{2}和\sqrt{3}都属于V_1\cup{V_2},但他们相加却不属于,即得证 2 3 V1V2
==>加法运算不封闭,不是子空间

维数公式

两个子空间,和集的维数=算并集面积时的算法
d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 − d i m ( V 1 ∩ V 2 ) dim(V_1+V_2)=dimV_1+dimV_2-dim(V_1\cap{V_2}) dim(V1+V2)=dimV1+dimV2dim(V1V2)

直和

两个子空间的和集,若和集中的每个元素都唯一对应V1和V2中的一组数相加,那么V1和V2的和集称为直和, W = V 1 ⨁ V 2 W=V_1\bigoplus{V_2} W=V1V2
定理
W是直和的充要条件是V1和V2的交集只含有零向量

思考题: V 1 + V 2 是 直 和 的 充 要 条 件 是 , 零 向 量 的 分 解 式 是 唯 一 的 。 V_1+V_2是直和的充要条件是,零向量的分解式是唯一的。 V1+V2

证:
(1)充分性: V 1 + V 2 是 直 和 = 》 零 向 量 的 分 解 式 唯 一 V_1+V_2是直和=》零向量的分解式唯一 V1+V2=
由直和的定义可得,直和中的任何向量的分解式都唯一
(2)必要性: 零 向 量 的 分 解 式 唯 一 = 》 V 1 + V 2 是 直 和 零向量的分解式唯一=》V_1+V_2是直和 =V1+V2
要证原命题,即证 零 向 量 的 分 解 式 唯 一 , 且 V 1 + V 2 不 是 直 和 零向量的分解式唯一,且V_1+V2不是直和 V1+V2不成立
V 1 + V 2 V_1+V_2 V1+V2不是直和,则存在一个元素 a ∈ V 1 + V 2 , a = a 1 + b 1 , 且 a = a 2 + b 2 , ( a 1 , a 2 ∈ V 1 ; b 1 , b 2 ∈ V 2 ) a\in{V_1+V_2},a=a_1+b_1,且a=a_2+b_2,(a_1,a_2\in{V_1};b_1,b_2\in{V_2}) aV1+V2,a=a1+b1,a=a2+b2,(a1,a2V1;b1,b2V2)
=》 → 0 = a 1 − a 2 + ( b 1 − b 2 ) , ( a 1 − a 2 ∈ V 1 ; ( b 1 − b 2 ) ∈ V 2 ) \underset{0}{\rightarrow}=a_1-a_2+(b_1-b_2),(a_1-a_2\in{V_1};(b_1-b_2)\in{V_2}) 0=a1a2+(b1b2),(a1a2V1;(b1b2)V2)
同时 → 0 = → 0 + → 0 \underset{0}{\rightarrow}=\underset{0}{\rightarrow}+\underset{0}{\rightarrow} 0=0+0
与“零向量的分解式唯一”矛盾
=》得证

线性空间的同构

同构映射

对于任意 x , y ∈ V , 在 V ‘ 上 有 σ ( x ) + σ ( y ) = σ ( x + y ) x,y\in{V},在V`上有\sigma(x)+\sigma(y)=\sigma(x+y) x,yV,Vσ(x)+σ(y)=σ(x+y)
同时 σ ( λ x ) = λ σ ( x ) \sigma(\lambda{x})=\lambda{\sigma(x)} σ(λx)=λσ(x)
则称 σ \sigma σ为V到V‘的同构映射

思考题

证明:数域P上两个有限维线性空间同构的充要条件是维数相同
证:
(1)充分性
因为两个线性空间同构,即他们之间的元素存在一一对应的映射关系,显然其维数相同
(2)必要性
两个线性空间V1,V2维数相同,设为n
从V1中取出一组基e1,e2……en,
则V1中的任一元素x可由这组基线性表出,坐标为(a1,a2……an)
保持坐标不变的情况下,从V2中取出一组基,则可得到V2中的对应元素x`
因此,V1中任一向量都对应着V2中一确定向量,由于两个空间在构成上完全平等,反之亦然
同时易得满足同构映射的两个条件

线性变换

什么是线性变换
就是把对象变换的一个函数(映射)T,只要变换后满足以下性质,就是线性变换
(1) T ( x ) + T ( y ) = T ( x + y ) T(x)+T(y)=T(x+y) T(x)+T(y)=T(x+y)
(2) T ( k x ) = k T ( x ) T(kx)=kT(x) T(kx)=kT(x)

思考题

求证:数域P上的线性空间V的全体线性变换组成的集合,构成一个线性空间
证:
要 证 其 构 成 线 性 空 间 , 即 证 其 加 法 和 数 乘 运 算 封 闭 从 全 体 线 性 变 换 中 任 取 两 个 线 性 变 换 T 1 与 T 2 即 证 T 1 + T 2 仍 属 于 这 个 空 间 ( 即 仍 是 线 性 变 换 ) 令 T = T 1 + T 2 ( 其 实 由 前 面 的 推 论 就 可 得 线 性 变 换 的 和 仍 是 线 性 变 换 ) 要 证 T 仍 是 线 性 变 换 , 即 证 T 满 足 T ( x ) + T ( y ) = T ( x + y ) 和 T ( k x ) = k T ( x ) ( 1 ) T ( x ) + T ( y ) = T 1 ( x ) + T 2 ( x ) + T 1 ( y ) + T 2 ( y ) = T 1 ( x + y ) + T 2 ( x + y ) = T ( x + y ) ( 因 为 T 1 和 T 2 都 是 线 性 变 换 , 所 以 满 足 T 1 ( x ) + T 1 ( y ) = T 1 ( x + y ) ) ( 2 ) T ( k x ) = T 1 ( k x ) + T 2 ( k x ) = k ( T 1 ( x ) + T 2 ( x ) ) = k T ( x ) 要证其构成线性空间,即证其加法和数乘运算封闭\\ 从全体线性变换中任取两个线性变换T_1与T_2\\ 即证T_1+T_2仍属于这个空间(即仍是线性变换)\\ 令T=T_1+T_2(其实由前面的推论就可得线性变换的和仍是线性变换)\\ 要证T仍是线性变换,即证T满足T(x)+T(y)=T(x+y)和T(kx)=kT(x)\\ (1)T(x)+T(y)=T_1(x)+T_2(x)+T_1(y)+T_2(y)=T_1(x+y)+T_2(x+y)=T(x+y)\\ (因为T_1和T_2都是线性变换,所以满足T_1(x)+T_1(y)=T_1(x+y))\\ (2)T(kx)=T_1(kx)+T_2(kx)=k(T_1(x)+T_2(x))=kT(x) 线线线T1T2T1+T2(线)T=T1+T2线线T线TT(x)+T(y)=T(x+y)T(kx)=kT(x)(1)T(x)+T(y)=T1(x)+T2(x)+T1(y)+T2(y)=T1(x+y)+T2(x+y)=T(x+y)(T1T2线T1(x)+T1(y)=T1(x+y))(2)T(kx)=T1(kx)+T2(kx)=k(T1(x)+T2(x))=kT(x)

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值