【每日一题见微知著】博弈算法——石子游戏 IX-Mid?

本文介绍了LeetCode的2029题——石子游戏IX-Mid,Alice和Bob通过移除石子进行对决,目标是使移除石子的总和无法被3整除。文章详细解释了如何将石子按被3除的余数分成三堆,并分析了最佳策略,特别是0堆石子如何影响比赛胜负。提供了解题思路和官方题解的链接,适合算法爱好者学习。
摘要由CSDN通过智能技术生成

⭐️寒假新坑——代码之狐的每日做题笔记

2029. 石子游戏 IX-Mid

题目描述:

Alice 和 Bob 再次设计了一款新的石子游戏。现有一行 n 个石子,每个石子都有一个关联的数字表示它的价值。给你一个整数数组 stones ,其中 stones[i] 是第 i 个石子的价值。

Alice 和 Bob 轮流进行自己的回合,Alice 先手。每一回合,玩家需要从 stones 中移除任一石子。

  • 如果玩家移除石子后,导致 所有已移除石子 的价值 总和 可以被 3 整除,那么该玩家就 输掉游戏
  • 如果不满足上一条,且移除后没有任何剩余的石子,那么 Bob 将会直接获胜(即便是在 Alice 的回合)。

假设两位玩家均采用 最佳 决策。如果 Alice 获胜,返回 true ;如果 Bob 获胜,返回 false

解题思路:

将石子分为3堆,被3除余0、1、2;

将0堆视为轮空堆,选择0堆的石子移除视为轮空,可以逆转输赢——偶数个0石子,输赢逆转回去,只有奇数个0石子有效

1和2石子个数的考虑情况见代码注释:

代码实现:
class Solution {
   
    public boolean stoneGameIX(int[] stones) {
   
        int index_0=0;
        int index_1=0;
        int index_2=0;
        for(int i:stones){
   
            switch(i%3){
   
                case 0:index_0++;break;
                case 1:index_1++;break;
                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码之狐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值