非结构化数据管理
文章平均质量分 76
CaritoB
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
非结构化数据管理的挑战与最佳实践
未来,随着人工智能与分布式技术的演进,非结构化数据的管理与实践必将进一步走向自动化与集成化,成为企业数字化竞争力的关键支柱。例如,制造业企业可能同时需要处理设计图纸、传感器日志和质检影像,这些数据若不加以有效组织,极易形成“数据沼泽”,阻碍信息的快速检索与使用。通过构建标准化的元数据框架,企业能够对分散的非结构化数据进行自动采集、分类和打标,形成可全局检索的数据地图。非结构化数据因其格式灵活、内容非标,往往难以实施细粒度的权限控制和审计追踪,从而增加了数据泄露或违规使用的风险。金融行业同样面临类似问题。原创 2025-09-29 11:20:29 · 437 阅读 · 0 评论 -
非结构化数据管理的挑战与架构设计最佳实践探析
数据散落在各部门、多个业务系统中,缺乏有效的集中管控机制,形成大量“数据孤岛”。最后,合规性与安全性要求日趋严格,尤其是在数据隐私和行业监管框架下,企业必须确保数据的全程可追溯、可审计和受控访问,而这在分散化的管理模式下几乎难以实现。许多组织发现,传统的基于结构化数据构建的管理框架难以应对非结构化数据的复杂性、多样性和动态性,亟需一套全新的架构理念和实践方法来重塑数据管理能力。治理框架应注重元数据的标准化,利用自动化工具提取和填充技术元数据、业务元数据与管理元数据,为数据的可发现性和可理解性奠定基础。原创 2025-09-29 11:19:09 · 487 阅读 · 0 评论 -
从混沌到清晰:释放非结构化数据的业务价值
更为关键的是第二步:赋予数据智能化的理解能力。在当今的商业环境中,企业的核心资产正以前所未有的速度从整齐划一的表格与数字,转向形式多样、总量庞大的非结构化数据。在数据被清晰梳理和理解的基础上,可以实施精细化的权限管理策略,确保不同角色、不同项目的成员只能访问其授权范围内的数据,同时所有操作皆可追溯,满足合规要求。在此基础之上,一些领先的实践已能够通过内置的智能算法,对数据内容进行自动化的识别、分类与标签化,并建立跨模态的关联关系,从而将分散的信息点编织成一张完整的知识网络,大幅提升知识的可发现性和复用性。原创 2025-09-28 11:46:20 · 719 阅读 · 0 评论 -
非结构化数据管理的挑战、场景问题与解决思路
在实际应用中,一些先进的解决方案已经能够实现多模态数据的智能关联,例如将会议录音与对应的会议纪要和演示文稿自动关联,形成完整的知识链路。传统的以数据库为核心的结构化数据管理体系,难以应对非结构化数据的独特属性,从而催生了管理架构的持续演进。构建企业级的内容管理平台,将分散的存储系统通过统一接口进行聚合,使数据在逻辑上形成整体,同时保留物理分布的灵活性。它们通过融合全局文件系统与智能元数据管理,实现了跨地域、跨部门的数据无缝流转与安全协作,同时提供了细粒度的权限控制与审计日志,确保合规性要求得到满足。原创 2025-09-28 11:45:03 · 291 阅读 · 0 评论 -
企业非结构化管理平台建设路径与国产化替代实践
值得注意的是,某些先进方案已支持智能内容识别技术,可自动对交换数据进行分类分级,并实施相应的保护策略(如自动加密敏感文件)。在实际业务场景中,FTP的局限性表现为多重矛盾。更严重的是,当多个合作伙伴需访问同一数据池时,FTP难以实现精细化的权限控制(如基于角色的下载权限、时间限制等),迫使企业要么承担数据过度暴露的风险,要么增加人工审核环节降低效率。在医疗数据交换场景中,研究者需要共享匿名的患者影像数据,但FTP既无法自动识别敏感信息(如意外包含的元数据),也难以生成符合HIPAA要求的完整审计日志。原创 2025-09-23 10:32:49 · 444 阅读 · 0 评论 -
企业应构建现代化数据交换体系以替代FTP
值得注意的是,某些先进方案已支持智能内容识别技术,可自动对交换数据进行分类分级,并实施相应的保护策略(如自动加密敏感文件)。在实际业务场景中,FTP的局限性表现为多重矛盾。更严重的是,当多个合作伙伴需访问同一数据池时,FTP难以实现精细化的权限控制(如基于角色的下载权限、时间限制等),迫使企业要么承担数据过度暴露的风险,要么增加人工审核环节降低效率。在医疗数据交换场景中,研究者需要共享匿名的患者影像数据,但FTP既无法自动识别敏感信息(如意外包含的元数据),也难以生成符合HIPAA要求的完整审计日志。原创 2025-09-23 10:19:32 · 323 阅读 · 0 评论 -
非结构化数据管理平台:企业数字化建设的核心价值与实践路径探讨
在数字化浪潮席卷各行各业的今天,企业的核心资产正以前所未有的速度从传统的结构化数据,向包含文档、图像、音视频、设计图纸、日志文件等在内的海量非结构化数据迁移。这些数据蕴含着巨大的商业价值与洞察潜能,但因其格式多样、体量庞大、关联复杂等特性,如何对其进行有效的治理、利用与挖掘,已成为摆在众多组织面前的一项严峻挑战,直接关系到数字化建设的深度与成败。然而,传统的基于文件夹目录的管理方式,依赖人工记忆与整理,搜索效率低下,且无法实现内容级的深度检索与知识关联,使得数据价值沉睡在存储设备中。原创 2025-09-22 15:59:40 · 414 阅读 · 0 评论 -
企业非结构化数据治理与存储架构优化实践探索
然而,许多企业在非结构化数据的管理上面临着严峻挑战:数据量急剧膨胀导致存储成本攀升,数据使用效率低下,治理机制缺失带来合规风险,以及跨部门协作中的数据孤岛问题。通过整合分散的存储资源,形成逻辑统一的数据湖式存储底座,并在此基础上实现数据的标准化接入、元数据自动提取与分类打标。企业通常采用多级存储介质(如高速磁盘、低成本的对象存储或磁带库)来容纳不同热度的数据,但由于缺乏智能的数据分层机制,冷数据长期占用高性能资源,而热数据却可能因存储空间不足而无法及时访问,造成资源浪费和性能瓶颈。第三,数据利用效率低下。原创 2025-09-22 15:57:58 · 434 阅读 · 0 评论 -
企业非结构化数据治理与安全存储平台的建设实践
在实践层面,市场上已有成熟的一体化平台方案,能够通过智能驱动的方式,将分散在多个孤立环境中的数据进行统一聚合与管理,并赋予其严格的权限控制和高效的检索能力,为企业构建安全、可控、高效的数字内容协作环境。5. 无缝协同与集成:平台需与企业日常使用的办公软件、业务系统(如ERP、CRM)以及协同工具深度融合,提供便捷的文件共享、协作编辑、版本管理等功能,让数据治理的过程无缝嵌入现有工作流,避免因流程改变而带来额外的适应成本,真正提升协同效率。构建一个企业级的非结构化数据治理与安全存储平台,成为破局的关键。原创 2025-09-19 10:43:19 · 383 阅读 · 0 评论 -
企业非结构化数据治理:从传统FTP到现代化平台的迁移实践
然而,许多企业在管理这类数据资源时,仍严重依赖传统技术手段,其中文件传输协议(FTP)及其衍生形态(如SFTP、FTPS)作为存贮和共享的经典工具,至今仍在众多组织中广泛使用。同样,在合规要求严格的金融行业,传统FTP难以实现对敏感数据的精细化权限控制和操作日志的全生命周期记录,这不仅增加了合规风险,也使得内外部审计变得异常繁琐。例如,通过集成光学字符识别(OCR)、自然语言处理(NLP)等技术,能够对非结构化数据进行内容提取和语义分析,将无序的数据转化为结构化信息,进一步支持业务洞察和自动化流程构建。原创 2025-09-19 10:40:17 · 736 阅读 · 0 评论 -
非结构化数据管理平台:数字化转型的核心驱动力与实施路径
尤其是在数据隐私保护法规日趋严格的背景下,企业对非结构化数据中个人信息的识别、分类和保护能力,已成为检验其治理水平的重要标尺。在此过程中,部分解决方案提供了便捷的内容聚合机制,能够将多样化的文件类型统一索引和管理,支持跨系统、跨地域的安全访问与协作,为企业提供了高效、可控的内容管理体验。同时,应建立完善的操作日志和审计机制,满足合规性要求,并为数据安全事件提供可追溯的能力。最后,从风险管控的角度,统一管理平台能够显著增强企业的合规能力和安全水平,避免因数据泄露或治理失当而带来的声誉损失和经济损失。原创 2025-09-18 10:26:11 · 274 阅读 · 0 评论 -
企业非结构化数据管理平台的架构设计与实践探索
其中,非结构化数据——包括文档、图像、音视频、日志文件等——占据了数据总量的80%以上,成为企业核心信息资产的重要组成部分。传统方式下,这些数据可能存储于多个独立系统,审计时需人工整合和验证,不仅耗时耗力,还容易因数据遗漏或错误而引发合规风险。例如,一些平台通过内容智能分析技术,能够自动识别和分类海量文件,并为其建立可检索的知识图谱,从而提升数据利用效率。通过平台化架构和智能化实践,企业能够有效应对数据分散、安全风险和低效利用等挑战,最终实现数据资产的业务价值最大化。三、解决思路:平台化架构与智能化管理。原创 2025-09-18 10:01:03 · 548 阅读 · 0 评论 -
企业非结构化数据治理与安全存储的架构实践探索
这场实践探索,不仅是技术的升级,更是管理理念的革新,它将指引企业将其最庞大的数据资产转化为最可靠的核心竞争力。该架构不应是一个封闭的系统,而应具备丰富的API和集成能力,能够与企业现有的身份认证系统、业务应用(如OA、ERP、设计软件)以及安全生态(如DLP、SOC)无缝对接,使得数据治理与安全能力能够渗透到业务的每一个角落,形成协同效应。在这一架构中,可引入具备强大内容管理能力的解决方案,它能够为企业提供一个统一的内容池,实现文件的集中存储与规范化管理,并确保其在各类应用场景中能够被安全、高效地调用。原创 2025-09-17 10:32:35 · 557 阅读 · 0 评论 -
企业非结构化数据管理的挑战、场景问题与解决思路探讨
数字化转型的本质是数据能力的升级,而非结构化数据作为企业信息资产的重要组成,其管理水平的提升尤为关键。然而,由于非结构化数据天然具有分散性、格式复杂、关联性弱等特点,如何高效地管理、利用和保护这类数据,成为许多企业在推进数字化进程中的核心痛点。在此基础上,引入智能分类、自动标签、内容提取等技术,提升数据的结构化程度,使其更易于检索和利用。许多企业虽然积累了海量的非结构化数据,但由于缺乏有效的数据分类、检索和分析手段,这些数据难以转化为实际业务价值。传统的存储和管理方式难以应对数据规模的快速增长。原创 2025-09-17 10:00:42 · 329 阅读 · 0 评论 -
探讨基于国产化架构的非结构化数据管理平台建设路径与实践
这类数据形态多样、来源分散、格式不一,包括文档、图像、音视频、日志文件等多种形式,其管理难度远高于传统结构化数据。许多企业在数据存储、处理和安全方面仍沿用传统方式,导致数据孤岛现象严重、检索效率低下、合规风险上升,难以满足敏捷业务和智能化应用的需求。建立完善的数据权限管理、访问审计和加密机制,确保数据在存储、传输及使用过程中的安全性。在这一过程中,可引入具备国产化兼容能力的成熟内容管理解决方案,此类方案通常提供从数据接入、智能处理到安全共享的全链路管理功能,帮助企业快速构建合规、高效的数据管理环境。原创 2025-09-16 10:50:57 · 539 阅读 · 0 评论 -
企业非结构化数据治理导向的云盘建设路径与实践
在数字化转型不断深入的今天,企业的数据资产呈现爆发式增长,其中非结构化数据——包括文档、图像、音视频、设计图纸、合同文件等——占据了数据总量的80%以上。许多企业在日常运营中,虽积累了海量的非结构化数据,却难以对其进行有效的整合、保护与价值挖掘,反而因数据孤岛、权限混乱、安全风险等问题,拖慢了决策效率,增加了运营成本。然而,非结构化数据因其形式灵活、体量庞大,常常成为数据泄露的重灾区。该体系不仅提供数据集中存储与协作的能力,更应深度融合治理逻辑,确保数据在整合、使用和共享的全过程中可管、可控、可用。原创 2025-09-16 10:43:30 · 466 阅读 · 0 评论 -
聊聊那个正在“杀死”公司效率的隐形杀手:数据孤岛
周一的例会上,销售总监报上来一个客户增长数据,市场总监拿出的数据却有出入,而CEO看着财务上周给的报表,发现三个数字都对不上。会议室里一片沉寂,大家面面相觑,一场战略会硬生生开成了“数据对账会”。或者,设计部通宵做出来的最新版产品宣传册,市场部同事却没找到,用了一个月前的旧版本发给了重要的渠道商,造成了品牌形象的损失。这些场景的根源,往往都指向一个共同的“幽灵”——数据孤岛(Data Silos)。原创 2025-09-08 10:28:19 · 293 阅读 · 0 评论 -
能源行业非结构化数据管理创新案例研究
在能源行业,非结构化数据的管理正逐渐成为提升企业竞争力和运营效率的关键。从油气勘探的日志、图像到电力行业的监控视频、设备运行记录,这些非结构化数据蕴含着巨大的价值。然而,传统的数据管理方法难以应对非结构化数据的复杂性和规模。原创 2025-02-11 09:41:05 · 670 阅读 · 0 评论 -
非结构化数据管理中的标签体系构建方法
根据数据类型和业务需求,定义标签的分类。标签分类可以是层级结构,也可以是平面结构。层级结构的标签分类可以更细致地描述数据的属性,例如,文档可以分为“项目文档”“技术文档”“市场文档”等,而图片可以分为“产品图片”“活动图片”“员工图片”等。平面结构的标签分类则更简单直接,适用于数据类型较为单一的场景。构建一个有效的标签体系是非结构化数据管理的关键。通过明确数据类型和业务需求、定义标签分类、确定标签属性、设计标签关系、实施标签体系以及监控和优化,企业可以实现非结构化数据的高效管理和利用。原创 2025-02-11 09:38:53 · 619 阅读 · 0 评论 -
混合云环境下非结构化数据管理策略
在数字化转型的浪潮中,企业越来越多地采用混合云架构来满足其业务需求。混合云环境结合了公有云的灵活性和私有云的安全性,为企业提供了更广泛的选择和更高的效率。然而,随着非结构化数据的爆炸式增长,如何在混合云环境中有效管理这些数据成为了企业面临的一大挑战。本文将探讨混合云环境下非结构化数据管理的策略,并提供具体的实践建议。原创 2025-02-10 17:48:06 · 872 阅读 · 0 评论 -
从混乱到有序:企业非结构化数据管理全攻略
在当今数字化时代,企业面临着海量的数据,其中非结构化数据占据了相当大的比例。非结构化数据包括文档、图片、音频、视频等多种形式,其管理难度远大于结构化数据。许多企业在非结构化数据管理方面陷入了混乱,数据分散、难以检索、安全性差等问题层出不穷。本文将为企业提供一份全面的非结构化数据管理攻略,帮助企业从混乱走向有序。原创 2025-02-10 17:39:58 · 1212 阅读 · 0 评论 -
企业文档管理革新: 非结构化数据的智能化处理
企业的数据安全和合规要求越来越高,智能文档管理系统能够通过自动化的权限控制、审计追踪和加密存储,确保企业文档的安全性,同时满足行业和法律的合规要求。原创 2024-10-10 13:17:43 · 877 阅读 · 0 评论 -
企业知识图谱构建: 整合结构化与非结构化数据
企业知识图谱作为一种先进的知识管理工具,通过将不同来源的结构化和非结构化数据统一在一个语义化的框架中,能够为企业提供全局性视角,提升决策效率和创新能力。例如,在一份非结构化的客户反馈报告中,系统可能需要识别出涉及的客户、产品和问题,并通过关系抽取技术,提取出“客户投诉某产品”的语义结构,进而将其转化为知识图谱中的节点和边。对于结构化数据,需确保数据的完整性和一致性。:结构化数据的字段和关系通常是显性的,而非结构化数据中的语义信息往往隐含在文本、语境中,需要借助自然语言处理(NLP)技术进行深度分析和理解。原创 2024-10-10 13:14:18 · 1817 阅读 · 0 评论 -
非结构化数据管理中的元数据应用与实践
元数据即“数据的数据”,能够为数据提供结构化的信息描述,使得非结构化数据在管理中变得更加有序和高效。通过对元数据的追踪,系统可以自动管理数据的生命周期,例如当数据超过特定的使用期限后,自动触发归档或删除操作。例如,通过AI分析技术,系统可以自动为非结构化数据生成更多维度的元数据,帮助提升数据的可管理性和利用率。因此,在进行元数据管理时,需要企业制定统一的元数据标准,确保各系统之间的数据互通。元数据的应用贯穿于非结构化数据管理的各个阶段,从数据的生成、存储、使用到归档,元数据为数据的整个生命周期提供了支持。原创 2024-10-09 10:21:53 · 961 阅读 · 0 评论 -
如何评估和选择适合企业的非结构化数据管理工具
因此,工具应提供可靠的自动备份和恢复功能,并且支持异地备份和分布式数据存储,以提高数据的安全性。够快科技的非结构化数据管理解决方案,不仅帮助企业解决了数据存储、管理与安全的难题,还通过智能化技术为企业带来了更高的工作效率和数据价值的充分挖掘。• 智能化分类与检索:够快的解决方案支持自动化的数据分类与强大的全文检索功能,基于元数据的多维度搜索可以快速定位企业所需的任何非结构化数据。• 扩展性与灵活性:够快平台支持大规模的非结构化数据存储,能够根据企业的需求进行弹性扩展,并支持云端、本地和混合架构的部署。原创 2024-10-09 10:19:45 · 688 阅读 · 0 评论 -
非结构化数据安全:保护企业数字资产的关键
在数字化转型的浪潮中,企业产生的非结构化数据呈爆炸式增长。企业应建立清晰的分类标准,确定哪些数据是敏感的或机密的,并为这些数据打上合适的标签。通过这些日志和审计功能,企业不仅可以追踪数据的使用情况,还能在发现数据泄露或未授权访问时迅速采取措施,防止进一步的损失。此外,数据恢复机制也应高度重视,确保在紧急情况下,企业能够快速恢复被损坏或丢失的非结构化数据,最大限度减少业务中断和数据损失。通过这些强大的功能,够快帮助企业构建了一个安全、合规且高效的非结构化数据管理体系,为保护企业数字资产提供了坚实的基础。原创 2024-10-08 13:35:24 · 1309 阅读 · 0 评论 -
基于微服务架构的非结构化数据中台设计
通过合理的服务拆分、API网关的引入、服务治理机制的应用以及监控与日志记录系统的建立等措施可以显著提升非结构化数据中台的性能和可靠性为企业的数字化转型和业务创新提供有力支持。通过服务注册中心来管理所有服务的地址信息,客户端通过服务发现机制来找到对应的服务实例。在数字化转型的浪潮中,非结构化数据中台作为企业数据处理与分析的核心枢纽,其设计架构的选择对于系统的可扩展性、灵活性和可维护性至关重要。非结构化数据中台需要处理海量的非结构化数据,如文本、图像、视频等,这些数据具有格式多样、体积庞大、处理复杂等特点。原创 2024-09-20 17:18:10 · 694 阅读 · 0 评论 -
中台架构下的数据仓库与非结构化数据整合
数据仓库作为企业级数据存储和分析的核心平台,主要处理结构化数据,通过数据建模和ETL(提取、转换、加载)过程,将业务数据整合到统一的数据仓库中,支持复杂的数据分析和报表生成。然而,随着非结构化数据的激增,传统数据仓库在整合非结构化数据方面显得力不从心。在当今数字化转型的大潮中,企业面临着数据爆炸性增长的挑战,特别是非结构化数据的急剧增加,如何高效整合与管理这些数据成为了企业发展的关键议题。构建统一的数据平台:利用中台架构的共享服务特性,构建统一的数据平台,支持结构化数据和非结构化数据的统一存储和管理。原创 2024-09-20 17:07:38 · 1162 阅读 · 0 评论 -
数据安全标准在非结构化数据中台的遵守
在数字化转型的浪潮中,非结构化数据中台作为企业数据管理的核心枢纽,承载着海量且多样的数据资产。这些数据不仅关乎企业的运营决策,更涉及客户隐私、商业机密等敏感信息。因此,确保非结构化数据中台遵守数据安全标准,成为保障企业信息安全、维护客户信任的关键所在。原创 2024-09-19 18:14:47 · 600 阅读 · 0 评论 -
非结构化数据中台架构设计最佳实践
在数据驱动的时代背景下,非结构化数据已成为企业决策和运营的重要支撑。非结构化数据中台作为企业数据管理和分析的核心平台,其架构设计对于数据的高效利用和业务的快速发展至关重要。本文将探讨非结构化数据中台架构设计的最佳实践,旨在为企业提供一套高效、可扩展、安全的架构设计方案。原创 2024-09-19 18:11:25 · 944 阅读 · 0 评论 -
非结构化数据中台的用户权限管理
非结构化数据的发展历程可谓源远流长,随着信息技术的飞速进步,其产生背景、技术演进和应用拓展均呈现出鲜明的时代特征。在产生背景方面,非结构化数据的涌现是数字化时代信息爆炸的必然产物。随着互联网、移动通信和社交媒体的普及,人们在日常生活中产生的数据量急剧增长,这些数据大多以文本、图像、音频、视频等非结构化形式存在。与结构化数据相比,非结构化数据更能真实、全面地反映现实世界,因此逐渐成为信息领域的研究热点。技术演进方面,非结构化数据的处理和分析技术经历了从初步探索到逐步成熟的过程。原创 2024-09-12 10:07:18 · 952 阅读 · 0 评论 -
非结构化数据中台的数据清洗与预处理
在当前社会和技术背景下,非结构化数据的发展呈现出迅猛的增长态势。随着数字化、信息化和智能化的深入推进,各领域产生的非结构化数据量急剧上升,包括文本、图像、音频、视频等多种形式的数据。这些非结构化数据蕴含了丰富的信息和巨大的应用价值,逐渐成为数据驱动决策、创新研发、服务优化等方面的重要基础资源。在医疗领域,非结构化数据的增长尤为显著。随着医疗信息化水平的不断提升,大量的医疗影像、电子病历、医学文献等非结构化数据被生成和存储。这些数据为医学研究、临床决策、健康管理等方面提供了宝贵的信息支持。原创 2024-09-12 09:57:55 · 1608 阅读 · 0 评论 -
非结构化数据中台的数据生命周期管理
在当今数字化时代,非结构化数据已渗透到各个领域的日常运营与决策过程中。这类数据,以其原始、未经处理的形式,包含丰富的信息和潜在的价值,但同时也带来了一系列管理上的挑战,尤其是在数据合规性方面。非结构化数据的应用现状可谓广泛且复杂。以社交媒体为例,用户生成的文本、图片和视频等非结构化数据构成了这类平台的主要内容。这些数据不仅数量庞大,增长迅速,而且蕴含着用户的个人观点、情感倾向以及行为习惯等宝贵信息[4]。企业通过分析这些数据,能够更深入地了解用户需求,优化产品设计,提升市场竞争力。原创 2024-09-06 17:33:46 · 1019 阅读 · 0 评论 -
容器化技术在非结构化数据中台的部署研究
容器化技术,作为一种轻量级的虚拟化技术,近年来在云计算领域得到了广泛的关注和应用。它通过将应用程序及其依赖项打包到一个可移植的容器中,实现了应用程序在不同环境中的一致性运行。这种技术不仅提高了应用程序的部署效率,还降低了运维成本,因此在非结构化数据领域也展现出了巨大的应用价值。原创 2024-09-05 17:29:29 · 1240 阅读 · 0 评论 -
非结构化数据管理平台开发及实施研究
非结构化数据,作为当今数据领域的重要组成部分,以其独特的形式和丰富的信息含量,日益受到各行业的关注。本节将深入探讨非结构化数据的定义、特点,以及管理这类数据时面临的挑战。非结构化数据,顾名思义,是指那些不具备固定结构或格式的数据。与结构化数据(如数据库中的表格数据)相比,非结构化数据在形式上更为自由,包括但不限于文本、图像、音频、视频等多媒体内容。这些数据通常无法直接套用传统的数据结构进行分析和处理,因此需要采用特定的技术和方法来提取其中的信息。原创 2024-09-05 17:17:54 · 1050 阅读 · 0 评论 -
中台架构下的非结构化数据管理
在数字化转型的浪潮中,企业面临着数据规模爆炸性增长和数据类型多样化的双重挑战,尤其是非结构化数据的管理问题日益凸显。为了更有效地整合、处理和分析这些数据,中台架构应运而生,为非结构化数据的管理提供了新的思路和解决方案。原创 2024-09-04 09:46:38 · 839 阅读 · 0 评论 -
非结构化数据中台AI大模型对接解决方案
通过科学的数据安全保障机制,企业能够构建自己的优质数据燃料池、语料库,推动AI应用的落地,确保数据的安全性和合规性。多层次安全防护和防DDoS攻击;非结构化数据中台汇聚企业数据,构建起安全、高质量的数据池,作为AI应用的语料库支持,同时确保数据全生命周期的安全管控,涵盖AI应用过程中的数据访问、应用安全。非结构化数据中台为企业提供了一个安全整合、管理、分析和应用非结构化数据的解决方案,它能够快速整合、处理和分析大量的非结构化数据,确保数据安全、合规,提供更为精准的数据支持,进而提升AI应用的性能和安全性。原创 2024-09-02 13:16:34 · 3240 阅读 · 0 评论 -
国家网络安全宣传周|企业文件管理与数据安全
资产可知、流转可视、风险可控、策略可管原创 2023-09-15 14:37:26 · 172 阅读 · 1 评论 -
企业非结构化数据管理现状&需求
让非结构化数据价值有效释放原创 2023-04-27 17:12:33 · 644 阅读 · 0 评论 -
生物医疗行业非结构化数据管理
数字化文档管理平台通过强大的数据连接能力,实现数据统一的采集、存储、管理、应用,确保数据的完整性、可追溯性、可靠性,符合行业管理规范,释放数据价值,提升生产和执行效率。原创 2023-04-17 10:35:52 · 323 阅读 · 1 评论
分享