Vision - 视线估计(Gaze Estimation) 算法 ELG 的工程实践 教程

本文介绍了基于深度学习的视线估计算法在实际应用中的工程实践,包括预训练模型的下载、调试算法的步骤、模型的导出以及人脸检测算法如MTCNN、dlib和OpenCV的使用。文章详细讲解了如何处理眼睛区域、预处理眼睛图像并进行模型预测,以及如何替换模型输入OP并导出适用于移动端的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/117986628

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


ELG

ELG(Eye Region Landmarks based Gaze Estimation) 算法是基于眼区标志点的视线估计方法,通过精确捕捉眼球位置来实现视线追踪。与传统的特征驱动和模型驱动方法相比,ELG 算法使用深度学习技术,即使在不受控的真实世界环境中,也能与最新的基于外观的方法效果一致。核心在于训练鲁棒且准确的眼区标志点检测器,即使仅在合成数据上训练,也能在真实世界图像上超越现有的技术水平。ELG 算法不仅提高了虹膜定位和眼睛形状注册的准确性,而且通过检测到的标志点作为输入&#

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值