一、文献梳理
1、摘要
针对目前的视线估计算法准确度较低的问题,提出一种基于浅层残差网络的算法。利用残差网络结构特点,对图片在不同层次提取到的特征进行融合计算。实验表明,使用基于浅层残差网络结构的算法与使用LeNet-5结构算法相比‘’准确率提升了近8.5%视线估计算法准确度得到了有效的提升。
2、文献背景
应用:视线估计是预测视线方向、定位注视点位置的过程。该领域研究者经常用眼球跟踪(Eye Tracking)、视线跟踪(Gaze Tracking)和视线估计(Gaze Estimation)等术语相互替换。近几十年,视线估计都是比较活跃的研究课题,已经开始应用于人机交互、虚拟现实、生理心理疾病诊断等方面 。
研究方法:基于 CNN 的视线估计算法可避免大量的预处理和显性特征提取过程,但准确性还不能满足实际需求。为提升算法的准确性,研究主要分为两个不同方向。一个是在数据层面进行改进,通过增加数据的精确度提高视线估计的准确度。另一个方向则是在算法结构层面进行改进,提升算法本身的性能。
3、文献成果
1)研究成果:数据进行重复利用的特性,能对不同层次提取到的特征进行融合与计算
2)实验成果:通过 MPIIGaze 数据库的实验结果表明,该网络结构在相同条件下,获得了更高的准确度。