Stable Diffusion - SDXL 模型测试与全身图像参数配置

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132085757

Img

图像来源于 SDXL 模型,艺术风格是赛博朋克、漫画、奇幻。

全身图像是指拍摄对象的整个身体都在画面中的照片,可以展示人物的姿态、服装、气质等特点,也可以表达一种情绪或故事。全身图像的拍摄需要注意构图、光线、角度、姿势等方面。

全身图像的提示词:

full body shot,(head-to-toe shot:1.2),1girl,an asian beatiful woman in a dress and jacket standing,(office lady high heels),
pantyhose,black leggings,outdoors,
people in the center,soft light,natural and comfortable pose,face to camera,
<lora:neg4all_xl_v6:1>,<lora:pantyhose_widget_xl_v10:1.2>,

负向提示词:

nsfw,(ng_deepnegative_v1_75t:1.2),badhandv4,

注意:SDXL 的提示词一般不需要高质量、低质量等提示词,尽量简洁。

随机种子:383055127831933218942206410753

常用的描述全身的词汇:

full-body shot
head-to-toe shot
complete body photograph
comprehensive full-body image
overall body shot

注意配置,保持图像稳定:

  1. 图像尺寸选择 768x1152,其他尺寸会导致人物比例失衡;
  2. 开启高分辨率修复,放大算法4x-UltraSharp,重复幅度 0.3;开启 面部修复
  3. 开启 AfterDetailer,修复脸部和手部细节。

配置如下:

Img

结合不同的风格,绘制全身图像,例如 赛博朋克 (Neonpunk)、幻想艺术 (Fantasy art)、影片风格 (Cinematic)、高增强 (Enhance) 等。

测试模型 DreamShaper_XL1.0_alpha2,即:

Img1

测试模型 GuoFeng4_XL_Real-Beta,即:

Img2

下载 GuoFeng 模型的真实版,来源于 吐司Art 模型网站。

其他测试模型 ArienmixxlAsian_v10_SDXL1.0、SDVN6-RealXL,效果均不稳定。

测试参数示例:

ethereal fantasy concept art of full body shot,(head-to-toe shot:1.2),1girl,an asian beautiful woman in a dress and jacket standing,(high heels),
pantyhose and leggings,outdoors,
people in the center,soft light,natural and comfortable pose,face to shot,
lora:neg4all_xl_v6:1,lora:pantyhose_widget_xl_v10:1.2, . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy
Negative prompt: nsfw,breast,(ng_deepnegative_v1_75t:1.2),badhandv4, photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white
Steps: 35, Sampler: DPM++ 2M SDE Karras, CFG scale: 7, Seed: 2206410753, Face restoration: GFPGAN, Size: 768x1152, Model hash: 57fdfb1fbe, Model: GuoFeng4_XL_Real-Beta, Clip skip: 2, ADetailer model: face_yolov8n.pt, ADetailer confidence: 0.3, ADetailer dilate/erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer version: 23.7.6, Lora hashes: “neg4all_xl_v6: 9a735be26f5e, pantyhose_widget_xl_v10: 90b94c2a1974”, Version: v1.5.1

推荐 SDXL 版本的相关 LoRA,即:

  • 负向提示词 LoRA:neg4all_xl_v6
  • 袜子 LoRA:pantyhose_widget_xl_v10
### Stable Diffusion 的最新模型版本及其特性 Stable Diffusion 是一种基于深度学习的开源项目,专注于生成高质量图像。其最新的模型版本通常会随着社区的发展和技术的进步而不断更新。以下是关于 Stable Diffusion 最新模型版本的相关信息: #### 1. **Stable Diffusion XL (SDXL)** Stable Diffusion XL 是当前最先进的版本之一,它在多个维度上进行了改进,特别是在图像质量和细节表现力方面有显著提升[^2]。该版本的主要特点如下: - **发布时间**: SDXL 的首个版本于 2023 年发布,并随后推出了多个迭代版本以优化性能和稳定性。 - **特性**: - 更高的分辨率支持能力,能够生成更清晰、更细腻的图像- 支持更高的多样性控制参数,允许用户调整生成图像的具体属性(如对比度、颜色饱和度等)。 - 增强了对复杂场景的理解能力,尤其是在处理多对象或多背景的情况下表现出色。 #### 2. **Stable Diffusion Turbo** 作为另一个重要的变体,Stable Diffusion Turbo 主要针对速度和效率进行了优化。它的特点是: - **发布时间**: 同样是在 2023 年推出,旨在满足实时应用场景的需求。 - **特性**: - 显著提高了推理速度,在保持较高图像质量的同时降低了计算资源消耗。 - 使用轻量化技术减少内存占用,适合移动设备或其他受限环境下的部署。 #### 3. **其他扩展功能** 除了上述两个核心版本外,Stable Diffusion 还通过多种方式实现图像风格化定制,包括但不限于 Artist 艺术家风格、Checkpoint 预训练大模型、LoRA 微调模型以及 Textual Inversion 文本反转模型[^3]。这些工具使得开发者可以更加灵活地定义自己的创作需求。 --- ### 示例代码:如何检查已安装的 Stable Diffusion 版本 如果已经在本地环境中完成了 Stable Diffusion 的配置,则可以通过以下 Python 脚本来验证所使用的具体版本号: ```python import diffusers print(f"Current Stable Diffusion version: {diffusers.__version__}") ``` 此脚本依赖 `diffusers` 库来获取当前运行中的 Stable Diffusion 模型版本信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值