COLING2020-事件抽取/关系抽取/NER/少(零)样本 论文分类整理

COLING放榜啦!具体的论文列表请看这里! (ps.此文也在知乎更新啦!
和以往一下,小编对他们做了如下分类整理~

事件抽取

  • Hierarchical Chinese Legal event extraction via Pedal Attention
    Mechanism

  • Is Killed More Significant than Fled? A Contextual Model for Salient
    Event Detection

  • Joint Event Extraction with Hierarchical Policy Network

  • Event coreference resolution based on event-specific paraphrases and argument-aware semantic embeddings

  • KnowDis: Knowledge Enhanced Data Augmentation for Event Causality
    Detection via Distant Supervision

  • Modeling Event Salience in Narratives via Barthes’ Cardinal Functions

  • New Benchmark Corpus and Models for Fine-grained Event
    Classification: To BERT or not to BERT?

  • TWEETSUM: Event oriented Social Summarization Dataset

  • Distinguishing Between Foreground and Background Events in News

关系抽取

  • Learning to Prune Dependency Trees with Rethinking for Neural
    Relation Extraction
    (强烈安利!!!)

  • Document-level Relation Extraction with Dual-tier Heterogeneous Graph
    (强烈安利!!!)

  • TPLinker: Single-stage Joint Extraction of Entities and Relations
    Through Token Pair Linking
    (强烈安利!!!)

  • Dual Supervision Framework for Relation Extraction with Distant
    Event-Guided Denoising for Multilingual Relation Learning

  • Global Context-enhanced Graph Convolutional Networks for
    Document-level Relation Extraction

  • Graph Convolution over Multiple Dependency Sub-graphs for Relation
    Extraction

  • Graph Enhanced Dual Attention Network for Document-Level Relation
    Extraction

  • Improving Long-Tail Relation Extraction with Collaborating
    Relation-Augmented Attention

  • Improving Relation Extraction with Relational Paraphrase Sentences

  • Interactively-Propagative Attention Learning for Implicit Discourse
    Relation Recognition

  • Joint Entity and Relation Extraction for Legal Documents with Legal
    Feature Enhancement

  • Span-based Joint Entity and Relation Extraction with Attention-based
    Span-specific and Contextual Semantic Representations

  • ToHRE: A Top-Down Classification Strategy with Hierarchical Bag

  • Representation for Distantly Supervised Relation Extraction

  • Towards Accurate and Consistent Evaluation: A Dataset for
    Distantly-Supervised Relation Extraction

NER

  • Porous Lattice Transformer Encoder for Chinese NER (强烈安利!!!)
  • An Analysis of Simple Data Augmentation for Named Entity Recognition
  • Evaluating Pretrained Transformer-based Models on the Task of
    Fine-Grained Named Entity Recognition
  • Exploring Cross-sentence Contexts for Named Entity Recognition with
    BERT
  • Identifying Motion Entities in Natural Language and A Case Study for
    Named Entity Recognition
  • Leveraging HTML in Free Text Web Named Entity Recognition
  • Named Entity Recognition for Chinese biomedical patents
  • Neural Language Modeling for Named Entity Recognition
  • RIVA: A Pre-trained Tweet Multimodal Model Based on Text-image
    Relation for Multimodal NER

FewShot/ZeroShot

  • A Two-phase Prototypical Network Model for Incremental Few-shot
    Relation Classification
  • Bridging Text and Knowledge with Multi-Prototype Embedding for
    Few-Shot Relational Triple Extraction
  • Learning to Decouple Relations: Few-Shot Relation Classification with
    Entity-Guided Attention and Confusion-Aware Training
  • Logic-guided Semantic Representation Learning for Zero-Shot Relation
    Classification
  • Meta-Information Guided Meta-Learning for Few-Shot Relation
    Classification
  • A Two-phase Prototypical Network Model for Incremental Few-shot
    Relation Classification
  • ManyEnt: A Dataset for Few-shot Entity Classification
  • Meta-Information Guided Meta-Learning for Few-Shot Relation
    Classification
  • Automatically Identifying Words That Can Serve as Labels for Few-Shot
    Text Classification
  • Effective Few-Shot Classification with Transfer Learning
  • Emergent Communication Pretraining for Few-Shot Machine Translation
  • Bridging Text and Knowledge with Multi-Prototype Embedding for
    Few-Shot Relational Triple Extraction
  • Few-shot Pseudo-Labeling for Intent Detection
  • Few-Shot Text Classification with Edge-Labeling Graph Neural
    Network-Based Prototypical Network
  • Flight of the PEGASUS? Comparing Transformers on Few-shot and
    Zero-shot Multi-document Abstractive Summarization
  • GPT-based Few-shot Table-to-Text Generation with Table Structure
    Reconstruction and Content Matching
  • Learning to Decouple Relations: Few-Shot Relation Classification with
    Entity-Guided Attention and Confusion-Aware Training
  • Learning to Few-Shot Learn Across Diverse Natural Language
    Classification Tasks
  • Contrastive Zero-Shot Learning for Cross-Domain Slot Filling with
    Adversarial Attack
  • CosMo: Conditional Seq2Seq-based Mixture Model for Zero-Shot
    Commonsense Question Answering
  • Exploring the zero-shot limit of FewRel
  • Logic-guided Semantic Representation Learning for Zero-Shot Relation
    Classification
  • MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing

如有整理疏漏和错误的地方,还请大家多多指教嗷!
欢迎也在知乎关注我: Carrie
公众号: 深度学习的知识小屋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值