COLING放榜啦!具体的论文列表请看这里! (ps.此文也在知乎更新啦!
和以往一下,小编对他们做了如下分类整理~
事件抽取
-
Hierarchical Chinese Legal event extraction via Pedal Attention
Mechanism -
Is Killed More Significant than Fled? A Contextual Model for Salient
Event Detection -
Joint Event Extraction with Hierarchical Policy Network
-
Event coreference resolution based on event-specific paraphrases and argument-aware semantic embeddings
-
KnowDis: Knowledge Enhanced Data Augmentation for Event Causality
Detection via Distant Supervision -
Modeling Event Salience in Narratives via Barthes’ Cardinal Functions
-
New Benchmark Corpus and Models for Fine-grained Event
Classification: To BERT or not to BERT? -
TWEETSUM: Event oriented Social Summarization Dataset
-
Distinguishing Between Foreground and Background Events in News
关系抽取
-
Learning to Prune Dependency Trees with Rethinking for Neural
Relation Extraction (强烈安利!!!) -
Document-level Relation Extraction with Dual-tier Heterogeneous Graph
(强烈安利!!!) -
TPLinker: Single-stage Joint Extraction of Entities and Relations
Through Token Pair Linking (强烈安利!!!) -
Dual Supervision Framework for Relation Extraction with Distant
Event-Guided Denoising for Multilingual Relation Learning -
Global Context-enhanced Graph Convolutional Networks for
Document-level Relation Extraction -
Graph Convolution over Multiple Dependency Sub-graphs for Relation
Extraction -
Graph Enhanced Dual Attention Network for Document-Level Relation
Extraction -
Improving Long-Tail Relation Extraction with Collaborating
Relation-Augmented Attention -
Improving Relation Extraction with Relational Paraphrase Sentences
-
Interactively-Propagative Attention Learning for Implicit Discourse
Relation Recognition -
Joint Entity and Relation Extraction for Legal Documents with Legal
Feature Enhancement -
Span-based Joint Entity and Relation Extraction with Attention-based
Span-specific and Contextual Semantic Representations -
ToHRE: A Top-Down Classification Strategy with Hierarchical Bag
-
Representation for Distantly Supervised Relation Extraction
-
Towards Accurate and Consistent Evaluation: A Dataset for
Distantly-Supervised Relation Extraction
NER
- Porous Lattice Transformer Encoder for Chinese NER (强烈安利!!!)
- An Analysis of Simple Data Augmentation for Named Entity Recognition
- Evaluating Pretrained Transformer-based Models on the Task of
Fine-Grained Named Entity Recognition - Exploring Cross-sentence Contexts for Named Entity Recognition with
BERT - Identifying Motion Entities in Natural Language and A Case Study for
Named Entity Recognition - Leveraging HTML in Free Text Web Named Entity Recognition
- Named Entity Recognition for Chinese biomedical patents
- Neural Language Modeling for Named Entity Recognition
- RIVA: A Pre-trained Tweet Multimodal Model Based on Text-image
Relation for Multimodal NER
FewShot/ZeroShot
- A Two-phase Prototypical Network Model for Incremental Few-shot
Relation Classification - Bridging Text and Knowledge with Multi-Prototype Embedding for
Few-Shot Relational Triple Extraction - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training - Logic-guided Semantic Representation Learning for Zero-Shot Relation
Classification - Meta-Information Guided Meta-Learning for Few-Shot Relation
Classification - A Two-phase Prototypical Network Model for Incremental Few-shot
Relation Classification - ManyEnt: A Dataset for Few-shot Entity Classification
- Meta-Information Guided Meta-Learning for Few-Shot Relation
Classification - Automatically Identifying Words That Can Serve as Labels for Few-Shot
Text Classification - Effective Few-Shot Classification with Transfer Learning
- Emergent Communication Pretraining for Few-Shot Machine Translation
- Bridging Text and Knowledge with Multi-Prototype Embedding for
Few-Shot Relational Triple Extraction - Few-shot Pseudo-Labeling for Intent Detection
- Few-Shot Text Classification with Edge-Labeling Graph Neural
Network-Based Prototypical Network - Flight of the PEGASUS? Comparing Transformers on Few-shot and
Zero-shot Multi-document Abstractive Summarization - GPT-based Few-shot Table-to-Text Generation with Table Structure
Reconstruction and Content Matching - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training - Learning to Few-Shot Learn Across Diverse Natural Language
Classification Tasks - Contrastive Zero-Shot Learning for Cross-Domain Slot Filling with
Adversarial Attack - CosMo: Conditional Seq2Seq-based Mixture Model for Zero-Shot
Commonsense Question Answering - Exploring the zero-shot limit of FewRel
- Logic-guided Semantic Representation Learning for Zero-Shot Relation
Classification - MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing
如有整理疏漏和错误的地方,还请大家多多指教嗷!
欢迎也在知乎关注我: Carrie
公众号: 深度学习的知识小屋