Learning to Decouple Relations: FewShot RC with Entity-Guided Attention and Confusion-Aware Training

Yingyao Wang1∗, Junwei Bao2, Guangyi Liu3, Youzheng Wu2,
Xiaodong He2, Bowen Zhou2, Tiejun Zhao1
1Harbin Institute of Technology, Harbin, China
2JD AI Research, Beijing, China
3The Chinese University of Hong Kong, Shenzhen, China
{baojunwei,wuyouzheng1,xiaodong.he,bowen.zhou}@jd.com
yywang@hit-mtlab.net,gy-liu@foxmail.com,tjzhao@hit.edu.cn

Abstract

本文旨在增强少镜头关系分类,特别是对于联合描述多个关系的句子。由于某些关系通常在相同的上下文中保持较高的共现性 【关系混淆问题】,以前的few-shot 关系分类器很难用很少的注释实例来区分它们。为了缓解上述关系混淆问题,我们提出了 CTEG,该模型配备了两种机制来学习解耦这些容易混淆的关系。一方面,引入实体引导注意力(EGA)机制,利用每个单词与指定实体对之间的句法关系和相对位置,引导注意力过滤掉引起混淆的信息。另一方面,提出了一种混淆感知训练(CAT)方法,通过在将句子分类为真实关系与其混淆关系之间进行 pushing-away 游戏来显式学习区分关系。在 FewRel 数据集上进行了广泛的实验,结果表明,我们提出的模型在准确性方面与强基线相比取得了可比甚至更好的结果。此外,消融测试和案例研究验证了我们提出的 EGA 和 CAT 的有效性,特别是在解决关系混淆问题方面

5 Conclusions

在本文中,我们提出了 CTEG 配备了两种新颖的机制,即实体引导注意 (EGA) 和混淆感知训练 (CAT),以解决少样本关系分类 (RC) 中的关系混淆问题。 我们对基准数据集 FewRel 进行了广泛的实验,实验结果表明我们的模型在少样本 RC 上取得了显着的改进。 消融研究验证了所提出的 EGA 和 CAT 机制的有效性。 案例研究和进一步分析表明,我们的模型具有解耦易混淆关系的能力

2 Methodology

在这里插入图片描述图 1:我们的模型 CTEG 的框架,包括实体引导注意 (EGA) 和混淆感知训练 (CAT) 机制。

2.1 EGA: Entity-Guided Attention Encoder

Relative Position.

Syntactic Relation 除了相对位置,我们进一步引入句法关系来衡量每个单词与指定实体之间的相关性。句法关系是基于从 Standford Parser 获得的依赖分析树派生的。例如,图 2(a) 显示了句子“Chen-chun-chang is a mathematic who working in model-theory”的原始的依存树,其中“Chen-chun-chang”和“model-theory”是实体。在本文中,我们假设直接连接到给定实体的单词在表达真实关系方面更为重要。因此,连接指定实体和其他词的依赖关系被保留,而其他的则被丢弃,从而得到修剪后的依赖树,如图 2(b) 所示。基于修剪后的依存树,句子中的每个单词都被分配了两个标签 ti = (ti,1, ti,2) 作为提出的句法关系。以第一个实体对应的单词 wi 的标签 ti,1 为例,如果 wi 是第一个实体的一部分,则标签 ti,1 被赋值为’self’,如果 wi 直接连接到依赖关系树中的第一个实体,ti,1 被分配依赖关系,例如’nmod’。此外,如果 wi 既不连接到第一个实体也不属于第一个实体的一部分,则将 ti,1 分配为“other”。基于上述策略,图2中句子的句法关系如表2所示。最后将每个单词的两个依存标签ti = (ti,1,ti,2)基于一个 embedding lookup operation转换为连续向量,然后连接成向量 esyn i = [esyn1 i , esyn2 i ],其中 esyn1 i , esyn2 i ∈ Rdsyn 。

在这里插入图片描述图 2:句子的依赖树和 EGA 中用作句法关系的路径。
在这里插入图片描述表 2:给定句子中每个单词对应的句法关系。

Entity-Guided Gate

Gated Self-Attention

2.2 Classification

2.3 CAT: Confusion-Aware Training

3 Experiments

3.1 Implementation Details
3.2 Baselines
3.3 Comparison with Baselines
3.4 Ablation Study

How to Gate

What and When to Gate

3.5 Case Study

EGA visualized example EGA 中的实体引导门有望强调与真实关系更相关的词。 为了直观地验证 EGA 的有效性,我们在图 3 中显示了给定实例的实体引导门热图。该实例是从 FewRel 验证集中的“亲子”关系中采样的。 如图所示,“他妈妈是”这个词得分较高。 显然,这三个词对于表达“亲子”关系很重要。

在这里插入图片描述

CAT visualized example 在图 4 中,我们可视化了给定句子与其候选关系之间的距离分布。四个子图分别显示了不同模型计算的距离分布,包括我们的真实关系识别和混淆关系识别。在五个候选关系中,绿色的 R2 是句子的真实关系,红色的 R1 是句子通常被错误分类的混淆关系。子图中的每条边表示句子到对应关系的距离,实线表示最近的一条。具体来说,(a)是由随机初始化的网络计算的距离。 (b) 是 Proto 的分类结果,在这种情况下,查询被错误分类到 R1。 ( c ) 和 (d) 是我们的 CAT 的最终分类结果。我们的 CAT 计算出的查询与混淆关系之间的距离分布如(d)所示,可以看出该模型成功地使查询更接近于我们预期的混淆关系 R2。 之后,距离分布信息通过KL散度传播到真实关系训练中,该操作用于将真实关系预测的距离分布推离混淆关系的分布。 如 © 所示,句子被推离 R1 并更接近真实关系 R2。 这个例子验证了我们的假设,即对混淆关系的显式学习有助于识别真实关系。

在这里插入图片描述图 4:给定句子与不同模型计算的五个候选关系之间的距离。 其中(a)来自随机初始化网络,(b)来自 Proto 网络,(c)和(d)分别来自我们的真实关系训练和混淆关系训练。

3.6 Relation Confusion Problem

在本节中,我们将讨论我们的模型在混淆解耦方面的有效性,并使用混淆矩阵作为我们的评估指标。

Confusing Relations Selection 我们首先分析基线模型 Proto 和 Proto-HATT 的分类结果。 根据我们的统计数据,我们发现 FewRel 验证集中的 16 个关系中最容易相互混淆的三个关系。 它们的关系指标分别是P25、P26和P40,对应的真实关系是 “父母-孩子”、“丈夫-妻子”和“叔侄”。 我们在 5-way-5-shot 配置下测试我们的模型和基线模型。 对于这三个容易混淆的关系,我们分别记录它们被正确分类和错误分类到另外两个关系中的句子的数量,并用结果来进行混淆矩阵。

Improvement of Relation Confusion Problem 如图 5 所示,我们报告了不同模型对 P25、P26 和 P40 三个混淆关系的分类结果。在混淆矩阵中,横轴代表句子的真实关系,纵轴代表不同模型对这些句子的分类结果。对于每个矩阵,假设给定关系如 P25 有 X 个句子参与测试,分类为 P25、P26 和 P40 的句子的数量分别为 a、b 和 c,而不是第一行的元素矩阵计算为 (a, b, c/X)。给定一个关系,我们期望模型将更多的句子分类为真正的关系,而将更少的句子分类为令人困惑的关系。从这个角度来看,通过比较“CTEG”和基线模型的混淆矩阵可以看出,我们的全模型CTEG在识别这些容易混淆的关系方面取得了最好的性能。 “w/o EGA”解耦混淆关系的能力最弱,因为它没有提供任何实体信息来识别真正的关系。根据“w/o EGA”、“w/ Pos”和“w/ Syn”的结果,我们可以看到相对位置和句法位置都带来了显着的改进。此外,与我们的完整模型相比,“w/o CAT”的性能证明了 CAT 有助于解耦混淆关系。

在这里插入图片描述图5:三种易混淆关系的混淆矩阵,其中不同颜色代表不同模型的分类结果

4 Related Work

Few-shot Relation Classification
Syntactic Relation 以前的 RC 模型通常使用相对位置信息来识别句子中的实体,例如 Zeng 等人(2015b) 。 此外,句子的句法信息在许多自然语言处理任务中被证明是有用的(Fale ́nska and Kuhn, 2019; Ma et al., 2020; Chen et al., 2017a)。 受杨等人(2016b)的启发,采用 RC 的依赖解析树(Ma et al., 2020),我们也引入了依赖关系作为另一种类型的位置来强调特定实体,并提出了句法位置的新应用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值