20、VB.NET 编程:事件处理、参数传递与函数返回值

VB.NET 编程:事件处理、参数传递与函数返回值

1. 关键事件处理

在 VB.NET 中,TextBox 控件能识别常见的鼠标事件,但在编程时,最重要的是按键事件。当控件获得焦点且按下按键时,就会触发这些按键事件。
- KeyPress 事件 :每次按下按键时都会触发该事件,它会报告按下的按键。
- KeyDown 和 KeyUp 事件 :分别在按键按下和释放时触发,通过这两个事件可以更精细地控制用户与键盘的交互。

以下是 KeyDown 事件处理程序的定义示例:

Private Sub TextBox1_KeyDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyEventArgs) _
Handles TextBox1.KeyDown

KeyDown 和 KeyUp 事件处理程序的第二个参数通过以下属性提供键盘状态和按下按键的信息:
| 属性 | 描述 |
| ---- | ---- |
| Alt, Control, Shift | 返回布尔值,指示按下按键时一个或多个控制键是否处于按下状态 |
| KeyCode | 返回按下按键的代码,其值是 Keys 枚举的成员之一 |
| KeyData | 与 KeyCode 类似,但还能区分按键上的字符或符号,其值也是 Keys 枚举的成员 |
| KeyValue | 返回按下按键的键盘值,通常与 Ke

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4.函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值