5、PostgreSQL设备优化指南

PostgreSQL设备优化指南

1. PostgreSQL内存参数优化

在PostgreSQL中,有几个关键的内存参数需要我们关注和优化,以确保数据库的高效运行。
- wal_buffers :用于存储传入的事务,每次提交操作时,这些事务会立即刷新到磁盘(pg_xlog文件)。默认情况下,该参数配置为使用shared_buffers内存的3%来存储传入事务。对于繁忙的数据库,这个设置可能不够,因为频繁的并发提交会导致事务处理不及时。
- max_stack_depth :用于函数调用和表达式执行栈。默认配置为2MB,我们可以将其增加到内核配置的栈大小(ulimit -s)。
- effective_cache_size :这是PostgreSQL实例的一个逻辑设置,用于提示当前可用的缓存(shared_buffers和操作系统缓存)的大小。基于这个缓存设置,优化器将为SQL生成更好的执行计划。建议将RAM的75%作为该参数的值。

这些内存组件并非在PostgreSQL启动时都会实例化,只有shared_buffers和wal_buffers会被初始化,其余的内存组件将在需要时进行初始化。更多关于这些参数的信息,请参考: https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html <

本项目聚焦于运用卷积神经网络技术进行人体姿态与动作的识别分析。核心程序模块包含四个组成部分:姿态检测模块、训练数据采集模块、模型训练模块以及主控程序模块。 在姿态检测模块中,构建了一个姿态识别类,该类整合了两种关键方法。第一种方法通过调用现成的骨骼点识别接口处理输入图像,获取人体关键节点信息并将识别结果存储在特定变量中;第二种方法则利用可视化工具包,将检测到的骨骼节点在图像中进行标注并建立连接关系。 训练数据采集模块实现了图像存储功能,该模块通过调用图像处理库的存储接口,将采集到的样本图像保存至本地存储设备,为后续模型训练阶段提供数据支持。 模型训练模块定义了完整的卷积神经网络训练流程。该模块首先调用数据采集模块保存的图像数据集,通过多层级卷积运算提取图像特征,采用反向传播算法优化网络参数,最终生成可用于动作分类的识别模型。整个训练过程包含数据预处理、网络结构配置、损失函数计算和参数优化等标准步骤。 项目采用模块化设计理念,各功能组件之间保持高度独立性,通过清晰的接口定义实现数据交互。技术实现方面,结合了深度学习框架与计算机视觉库,构建了从数据采集到模型训练的全流程解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值