基于光流法和混合高斯模型检测人群异常

该博客介绍了基于光流法和混合高斯模型的监控视频人群异常检测方法。首先通过跟踪角点计算人群平均速度,设定阈值检测异常运动。实验结果显示存在单车被正确标记但延迟,以及误判问题。后续工作将优化异常检测策略,提升准确率和实时性。
摘要由CSDN通过智能技术生成

基于光流法和混合高斯模型对监控视频中的人群进行跟踪

在上一篇博客中已经得出视频帧的光流信息,这里接着根据已有数据做人群异常检测。

实验思路:

首先跟踪所有的角点,计算出它们的运动速度v_{i}。接着对所有角点的速度求平均得出人群的平均速度v_{avg}。然后监测是否存在某个角点运动速度明显高于人群的平均速度。设置一个合适的阈值T,当满足条件v_{i} - v_{avg} > T时,判断为异常。

实验代码:

首先封装Point类和距离

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值