基于光流法和混合高斯模型对监控视频中的人群进行跟踪

本文介绍了一种基于UCSD Anomaly Detection Dataset的数据集,利用高斯混合模型进行前景提取,再结合Lucas Kanade光流法进行人群跟踪,通过光流信息分析预测视频中的异常行为。实验环境为Win10,Python 3.7.3,OpenCV 4.1.0。
摘要由CSDN通过智能技术生成

实验数据:

UCSD Anomaly Detection Dataset

该数据集由加州大学圣迭戈分校提供,由一个安装在高处、俯瞰人行道的固定摄像机获取的监控视频。视频中人群密度由稀疏到密集不等。其中正常定义:视频中仅有行人;异常定义为:视频中出现自行车/汽车/滑板车/轮椅等异常运动模式。数据集中提供了两个场景,分别为UCSDped1和UCSDped2,每个场景下又分为Train和Test,下面又会分为N个片段,每个片段都会有200帧图像。本实验用到“UCSDped1/Train/Train007”这一片段,下面为该片段的视频演示:

实验代码:

环境:Win10 | Python 3.7.3 | OpenCV 4.1.0

步骤一:前景提取

利用高斯混合模型分离图像帧的前景和背景

# 创建混合高斯模型
fgbg = cv2.createBackgroundSubtractorMOG2()

for frame in frames:
	frame_img = cv2.imread(frame_path + frame, 1)
	# 利用混合高斯模型提取前景
	fgmask = fgbg.apply(frame_img)

提取前景后的视频演示:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值