Spark 版本定制
文章平均质量分 80
cary_1991
这个作者很懒,什么都没留下…
展开
-
通过案例对SparkStreaming透彻理解三板之二
1.解密Spark Streaming运行机制2.解密Spark Streaming架构I.Spark Core是基于RDD形成的,RDD之间都会有依赖关系,Spark Streaming在RDD上的时间维度,DStream就是在RDD的基础之上加上了时间维度。DStream就是RDD的模板,随着时间的流逝不断地实例化DStream,以数据进行填充DStream Graph,静态的原创 2016-05-06 23:44:06 · 1004 阅读 · 0 评论 -
基于案例一节课贯通Spark Streaming流计算框架的运行源码
在线动态计算分类最热门商品案例回顾与演示基于案例贯通Spark Streaming的运行源码使用Spark Streaming + Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三款手机。是用mysql数据库作为元数据库,使用Hive作为存储引擎,使用Spark SQL作为查询引擎。其中链接原创 2016-05-08 15:23:29 · 809 阅读 · 0 评论 -
解密SparkStreaming运行机制和架构分析
解密Spark Streaming Job架构和运行机制解密Spark Streaming容错架构和运行机制作业的生成肯定是一个动态的生成private[streaming]valgraph: DStreamGraph = { if(isCheckpointPresent) { cp_.graph.se原创 2016-05-08 16:44:38 · 1910 阅读 · 0 评论 -
Spark Streaming事务处理彻底掌握
Exactly once输出不重复A.课程的目的:根据自己的业务需要,定制开发自己需要的Spark版本,包括Spark Bug的修复,性能的改进,功能的扩展,总之适合自己公司的维护,便于简单易理解,易维护。B.事务处理,比如银行转账,事务的输入和输出都应该保证事务一致一方面处理能够处理,且只被处理一次,输出能够输出且只能输出一次一原创 2016-05-08 17:15:06 · 970 阅读 · 0 评论