Coursera - Algorithm (Stanford) - 课程笔记 - Week 11

Huffman Codes

  • 二位码:将字符表中的字符映射为二位编码
  • 定长编码:易于设计,但是空间浪费严重——压缩编码?
  • 变长压缩编码:存在歧义问题,界限不确定——消歧?
  • 消歧方案——变长无前缀码:没有任何一个码字是另外一个码字的前缀
  • 词频越高,对应的码字越短——平均码字长度更短
  • 目标:给定一组字符及其频率,给出最佳的非前缀编码——编码树
  • 无前缀编码树:左子节点对应0,右子节点对应1
    • 只有叶子节点有明确的字符对应
    • 编码——根节点到对应叶子节点的位路径
    • 解码——沿着树向下遍历,到达叶子节点即获得对应字符
    • 编码长度即树的深度
  • 问题定义
    • 输入:一组字符的个字符概率(出现频率)
    • L ( T ) L(T) L(T):平均编码长度
    • 输出:一棵最小化平均编码长度的编码树
  • 构建树的贪心算法:自底向上的方法
    • 不断地合并节点
    • 产生 N − 1 N - 1 N1个内部无标记节点,同时保证所有的叶子节点都是标记节点
    • “安全”的合并——霍夫曼算法
      • 对于字符 i i i的编码长度,等于其被合并的次数
      • 选择出现频率最低的两个字符进行合并
      • 合并后的中间节点(子树)的对应频率为所有标记节点频率的总和
      • 统一采用右倾二叉树的形式
  • 时间复杂度:堆实现 O ( n log ⁡ n ) O(n \log n) O(nlogn)
    • 每次取最小的两个
    • 合成新节点(键值为求和)重新插入到堆中

Dynamic Programming

  • 路径图的加权独立子集问题
    • 问题定义
      • 输入:一个路径图 G = ( V , E ) G=(V, E) G=(V,E),各节点具有非负权重
      • 输出:非邻接节点子集——独立集,具有最大权重和
    • 最优子结构
      • 可以缩小候选集,并在候选集中直接进行暴力搜索
      • S ⊆ V S \subseteq V SV为WIS, v n v_n vn为最后一个节点
      • 考虑 v n v_n vn是否属于 S S S的两种情形下的最优结果
      • v n ∉ S v_n \notin S vn/S,那么除去之的子图 G ′ G^\prime G S S S仍为其最大权重WIS
      • v n ∈ S v_n \in S vnS,那么连接之的 v n − 1 v_{n - 1} vn1不可选择,除去这两个点的子图 G ′ ′ G^{\prime\prime} G,除去 v n v_n vn S ′ S^\prime S仍然为最优WIS
    • 最优结果搜索
      • 暴力搜索?指数时间复杂度
      • 实际每一次迭代考虑的子问题只涉及当前子图下最右节点是否不选择—— O ( n ) O(n) O(n)个子问题
      • 时间复杂度简化——对于已经解决的子问题,结果保存到一个全局数组中——memoization记忆化
      • 通过记忆化+bottom-up迭代方式(从最左节点开始)实现算法的线性时间复杂度
    • 算法
      • 初始化 A [ 0 ] = 0 A[0] = 0 A[0]=0 A [ 1 ] = w 1 A[1] = w_1 A[1]=w1
      • 主循环:对 i = 2.. n i = 2 .. n i=2..n
        • A [ i ] = max ⁡ { A [ i − 1 ] , A [ i − 2 ] + w i } A[i] = \max \{A[i - 1], A[i - 2] + w_i\} A[i]=max{A[i1],A[i2]+wi}
        • 分别对应选还是不选当前节点两个情形,取最优
      • 时间复杂度 O ( n ) O(n) O(n)
    • 问题:算法给出了最优子结构,但是如何选择最后的答案?路径重建
    • 重建算法
      • 除了保存最优值,还要保留选择最优值时的最优节点选择方案
      • 从后往前看
        • 如果 A [ i − 1 ] ≥ A [ i − 2 ] + w i A[i - 1] \ge A[i - 2] + w_i A[i1]A[i2]+wi,跳过之,继续往前看
        • 否则,将当前节点加入到结果中,继续往前看
      • 时间复杂度 O ( n ) O(n) O(n)
  • 动态规划原则
    • 明确一系列子问题——最优子结构
    • 再给定一个小的子问题的答案之后,能够快速且正确地计算更大的子问题——递归 / 循环自由子结构状态变更
    • 在完成所有子问题的计算后,整个问题最终求解可以很容易得到
### 回答1: Coursera-ml-andrewng-notes-master.zip是一个包含Andrew Ng的机器学习课程笔记和代码的压缩包。这门课程是由斯坦福大学提供的计算机科学和人工智能实验室(CSAIL)的教授Andrew Ng教授开设的,旨在通过深入浅出的方式介绍机器学习的基础概念,包括监督学习、无监督学习、逻辑回归、神经网络等等。 这个压缩包中的笔记和代码可以帮助机器学习初学者更好地理解和应用所学的知识。笔记中包含了课程中涉及到的各种公式、算法和概念的详细解释,同时也包括了编程作业的指导和解答。而代码部分包含了课程中使用的MATLAB代码,以及Python代码的实现。 这个压缩包对机器学习爱好者和学生来说是一个非常有用的资源,能够让他们深入了解机器学习的基础,并掌握如何运用这些知识去解决实际问题。此外,这个压缩包还可以作为教师和讲师的教学资源,帮助他们更好地传授机器学习的知识和技能。 ### 回答2: coursera-ml-andrewng-notes-master.zip 是一个 Coursera Machine Learning 课程笔记和教材的压缩包,由学生或者讲师编写。这个压缩包中包括了 Andrew Ng 教授在 Coursera 上发布的 Machine Learning 课程的全部讲义、练习题和答案等相关学习材料。 Machine Learning 课程是一个介绍机器学习的课程,它包括了许多重要的机器学习算法和理论,例如线性回归、神经网络、决策树、支持向量机等。这个课程的目标是让学生了解机器学习的方法,学习如何使用机器学习来解决实际问题,并最终构建自己的机器学习系统。 这个压缩包中包含的所有学习材料都是免费的,每个人都可以从 Coursera 的网站上免费获取。通过学习这个课程,你将学习到机器学习的基础知识和核心算法,掌握机器学习的实际应用技巧,以及学会如何处理不同种类的数据和问题。 总之,coursera-ml-andrewng-notes-master.zip 是一个非常有用的学习资源,它可以帮助人们更好地学习、理解和掌握机器学习的知识和技能。无论你是机器学习初学者还是资深的机器学习专家,它都将是一个重要的参考工具。 ### 回答3: coursera-ml-andrewng-notes-master.zip是一份具有高价值的文件,其中包含了Andrew Ng在Coursera上开授的机器学习课程笔记。这份课程笔记可以帮助学习者更好地理解掌握机器学习技术和方法,提高在机器学习领域的实践能力。通过这份文件,学习者可以学习到机器学习的算法、原理和应用,其中包括线性回归、逻辑回归、神经网络、支持向量机、聚类、降维等多个内容。同时,这份笔记还提供了很多代码实现和模板,学习者可以通过这些实例来理解、运用和进一步深入研究机器学习技术。 总的来说,coursera-ml-andrewng-notes-master.zip对于想要深入学习和掌握机器学习技术和方法的学习者来说是一份不可多得的资料,对于企业中从事机器学习相关工作的从业人员来说也是进行技能提升或者知识更新的重要资料。因此,对于机器学习领域的学习者和从业人员来说,学习并掌握coursera-ml-andrewng-notes-master.zip所提供的知识和技能是非常有价值的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值