leetcode 探索 队列与栈 岛屿数量

题目

给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:

输入:
11110
11010
11000
00000
输出: 1

示例 2:

输入:
11000
11000
00100
00011
输出: 3
解释: 每座岛屿只能由水平和/或竖直方向上相邻的陆地连接而成。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-islands

分析

就是探索连城一片的1的个数,采用广度优先搜索结合队列实现,Go中没有队列,采用slice实现,每次出队slice就重新赋值。你可以把注释掉的打印语句打开,方便理解。

除了BFS,我们还有DFS,DFS采用递归,也就是系统的调用栈来实现。

两者共同点,都需要标记已经被访问过的元素,虽然这里简化了,是直接将元素据标记为0达到的。看起来DFS要更为简洁明了,递归的思想,果然很强大,由于每次都处理相同的事情,那么只要编写处理一次的代码,再递归自己,即可解决。

解法

  • 解法1 BFS
func numIslands(grid [][]byte) int {
    if len(grid) == 0{
        return 0
    }
    nr := len(grid)
    nc := len(grid[0])
    
    var numIsland = 0
    for r := range grid {
        // fmt.Printf("r: %d\n", r)
        for c := range grid[0] {
            // fmt.Printf("c: %d\n", c)
            
            if grid[r][c] == '1' {
                numIsland++
                grid[r][c] = '0'

                neighbors := make([]pair, 0)
                neighbors = append(neighbors, pair{r, c})
                for len(neighbors) != 0 {
                    front := neighbors[0]   // front
                    neighbors = neighbors[1:] // dequeue
                    row, col := front.first, front.second
                    // fmt.Printf("front: %d, %d\n", row,col)
                    if row - 1 >= 0 && grid[row-1][col] == '1' {
                        neighbors = append(neighbors, pair{row-1, col}) // enqueue
                        grid[row - 1][col] = '0' // 标记
                    }
                    if row + 1 < nr && grid[row+1][col] == '1' {
                        neighbors = append(neighbors, pair{row+1, col}) // enqueue
                        grid[row+1][col] = '0' // 标记
                    }
                    if col + 1 < nc && grid[row][col+1] == '1' {
                        neighbors = append(neighbors, pair{row, col+1}) // enqueue
                        grid[row][col+1] = '0' // 标记
                    }
                    if col - 1 >= 0 && grid[row][col-1] == '1' {
                        neighbors = append(neighbors, pair{row, col-1}) // enqueue
                        grid[row][col-1] = '0' // 标记
                    }
                    
                    // fmt.Printf("queue is: %v\n", neighbors)
                }
            }            
        }
    }
    
    return numIsland
}

type pair struct {
    first int
    second int
}
  • 解法2 DFS
func numIslands(grid [][]byte) int {
    if len(grid) == 0{
        return 0
    }
    
    var numIsland = 0
    for r := range grid {
        // fmt.Printf("r: %d\n", r)
        for c := range grid[0] {
            // fmt.Printf("c: %d\n", c)
            // 深度优先遍历,当第一次进去遍历时候,各个方向会在遇到0之后回溯,所以第一次dfs会把所有相邻的1都访问过,并且标记为已访问
            // 这里是否已经访问,通过将其标记为0。当dfs返回时候,数组的第一部分,应该被标记为0了。
            if grid[r][c] == '1' {
                numIsland++
                dfs(grid, r, c)
                fmt.Printf("r,c: %d, %d, grid: %v\n", r, c, grid)
            }
        }
    }
    
    return numIsland
}

func dfs(grid [][]byte, row, col int){
    nr := len(grid)
    nc := len(grid[0])
    
    // 如果是目标就返回,这里的目标是数组的边界,以及是否需要访问,因为为1的话,不是岛屿。不需要继续探索其周边。
    if row < 0 || col < 0 || row >= nr || col >= nc || grid[row][col] == '0' {
        return
    }
    
    grid[row][col] = '0' // 标记为已经搜索过了
    dfs(grid, row-1, col)
    dfs(grid, row+1, col)
    dfs(grid, row, col-1)
    dfs(grid, row, col+1)
}
展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。

实用主义学Python(小白也容易上手的Python实用案例)

12-24
原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会  【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值