可参考学习的网址
博客参考:http://blog.csdn.net/zouxy09/article/details/8775518
From知呼:http://www.zhihu.com/question/26006703
python学习:http://www.runoob.com/python3/python3-stdlib.html
BP算法:http://www.cnblogs.com/liuwu265/p/4696388.html
0、Andrew Ng的机器学习前四章的内容(线性回归与逻辑回归)
英文能力足够推荐英文版:openclassroom.stanford.edu
(中文版对应网易公开课v.163.com/special/openc)
1、CMU Advanced Introduction to Machine Learning PPT:cs.cmu.edu/~epxing/Clas
这是一门Machine Learning课程中讲到CNN的部分
2、CAFFE: caffe.berkeleyvision.org
CAFFE是一个常用的deep learning的软件工具,其页面上有deep learning的tutorial材料,同时想要深入了解具体实现的话可以直接阅读源代码
3. UFLDL: ufldl.stanford.edu/wiki
4、tensorflow安装配置教程网址:http://www.jianshu.com/p/c245d46d43f0 已尝试,非常有用,感谢博主
5、深度学习第一篇书籍:
《Deep Learning》 An MIT Press book,Ian Goodfellow and Yoshua Bengio and Aaron Courville
链接:http://www.deeplearningbook.org/
中文对照翻译地址:https://github.com/exacity/deeplearningbook-chinese