HALCON示例程序check_blister.hdev药品胶囊检测

HALCON check_blister.hdev药品胶囊检测

示例程序源码(加注释)

  • 显示、读入图片、设置显示字体等,之前的帖子已经介绍过了
    dev_close_window ()
    dev_update_off ()
    read_image (ImageOrig, ‘blister/blister_reference’)
    dev_open_window_fit_image (ImageOrig, 0, 0, -1, -1, WindowHandle)
    set_display_font (WindowHandle, 14, ‘mono’, ‘true’, ‘false’)
    dev_set_draw (‘margin’)
    dev_set_line_width (3)

  • 第一步,我们创建一个图案,以便在后续的水泡图像中轻松切出腔室。

  • access_channel - 访问多通道图像中的指定的一个通道。这里选取Image1的第一个通道
    access_channel (ImageOrig, Image1, 1)

  • 进行阈值分割,选取灰度值在90-255的区域
    threshold (Image1, Region, 90, 255)

  • 使用shape_trans对区域Region处理,提取Region的外框,convex功能是外框
    shape_trans (Region, Blister, ‘convex’)

  • orientation_region计算区域的方向,这个算子是基于elliptic_axis 算子来的,elliptic_axis 是求取等效的椭圆,所以用算子orientation_region相当于把区域Blister转化为一个等效椭圆,计算这个椭圆的长轴在图像中的角度。
    orientation_region (Blister, Phi)

  • 求取区域Blister的面积与中心坐标。
    area_center (Blister, Area1, Row, Column)

  • vector_angle_to_rigid - 根据初始坐标(前3个参数)与仿射变换后的坐标与角度(4-6,三个参数)角度生成一个旋转与平移的仿射变换矩阵HomMat2D。这里初始坐标与结束坐标都没有变化只是角度旋转到了0度。
    vector_angle_to_rigid (Row, Column, Phi, Row, Column, 0, HomMat2D)

  • affine_trans_image - 对图像进行任意的2D仿射变换。ImageOrig:要进行仿射变换的图像;Image2:仿射变换之后的图像;HomMat2D:2D仿射变换矩阵;constant:进行仿射变换的方式,这个代表使用均值滤波器来防止混叠效应的发生。false:仿射变换后的图片超出现有图片大小的区域不被剪切掉;若为true则相反。
    affine_trans_image (ImageOrig, Image2, HomMat2D, ‘constant’, ‘false’)

  • 生成一个空的对象Chambers
    gen_empty_obj (Chambers)

    for I := 0 to 4 by 1
          Row := 88 + I * 70
          for J := 0 to 2 by 1
              Column := 163 + J * 150
             * * 生成一个可旋转的矩形;
              * 前两个参数是区域中心坐标,第三个参数是矩形角度,后两个参数是矩形的宽高。
              gen_rectangle2 (Rectangle, Row, Column, 0, 64, 30)
             * * concat_obj  - 把两个对象融合在一起。
              * 注意,这个和union不一样,union是把两个对象整合成一个对象,整合后对象的元素个数为1;
              * 而使用concat_obj  是把几个对象联合成一个对象,这个对象中的元素个数之和不变。
              concat_obj (Chambers, Rectangle, Chambers)
          endfor
      endfor
    
  • 使用变换矩阵HomMat2D对Blister区域使用nearest_neighbor方法进行仿射变换。
    affine_trans_region (Blister, Blister, HomMat2D, ‘nearest_neighbor’)

  • 求取区域Blister与区域Chambers的差集
    difference (Blister, Chambers, Pattern)

  • 将区域Chambers(有多个元素)联合成一个区域(一个元素)
    union1 (Chambers, ChambersUnion)

  • 求取区域Blister的角度
    orientation_region (Blister, PhiRef)

  • 将角度PhiRef加180度
    PhiRef := rad(180) + PhiRef

  • 求取区域Blister的面积与中心坐标
    area_center (Blister, Area2, RowRef, ColumnRef)

  • 循环检测每一张图片

  • 定义变量Count 赋值6
    Count := 6

  • for循环
    for Index := 1 to Count by 1

    • 读入图片
      read_image (Image, ‘blister/blister_’ + Index$‘02’)

    • 对图片Image进行阈值分割,提取像素灰度值在90-255的区域
      threshold (Image, Region, 90, 255)

    • 分割连通域
      connection (Region, ConnectedRegions)

    • 使用select_shape 对区域ConnectedRegions进行筛选,筛选出面积值介于5000-999999的区域
      select_shape (ConnectedRegions, SelectedRegions, ‘area’, ‘and’, 5000, 9999999)

    • 求取区域SelectedRegions的外形
      shape_trans (SelectedRegions, RegionTrans, ‘convex’)

    • 求取区域RegionTrans的角度
      orientation_region (RegionTrans, Phi)

    • 求取区域RegionTrans的面积与中心坐标
      area_center (RegionTrans, Area3, Row, Column)

    • 生成仿射变换矩阵HomMat2D
      vector_angle_to_rigid (Row, Column, Phi, RowRef, ColumnRef, PhiRef, HomMat2D)

    • 使用HomMat2D矩阵对Image进行仿射变换
      affine_trans_image (Image, ImageAffinTrans, HomMat2D, ‘constant’, ‘false’)

    • 使用区域剪切图片,缩小图像处理定义域
      reduce_domain (ImageAffinTrans, ChambersUnion, ImageReduced)

    • 将图片ImageReduced分成R/G/B三通道图像
      decompose3 (ImageReduced, ImageR, ImageG, ImageB)

    • var_threshold - 通过局部均值和标准差分析对图像进行阈值处理。
      var_threshold (ImageB, Region, 7, 7, 0.2, 2, ‘dark’)

    • 分割连通域
      connection (Region, ConnectedRegions0)

    • 使用矩形对区域进行闭运算
      closing_rectangle1 (ConnectedRegions0, ConnectedRegions, 3, 3)

    • 填充孔洞
      fill_up (ConnectedRegions, RegionFillUp)

    • 进行面积筛选
      select_shape (RegionFillUp, SelectedRegions, ‘area’, ‘and’, 1000, 99999)

    • 使用圆形元素对区域进行开运算
      opening_circle (SelectedRegions, RegionOpening, 4.5)

    • 分割连通域
      connection (RegionOpening, ConnectedRegions)

    • 进行面积筛选
      select_shape (ConnectedRegions, SelectedRegions, ‘area’, ‘and’, 1000, 99999)

    • 求取区域轮廓
      shape_trans (SelectedRegions, Pills, ‘convex’)

    • 对区域Chambers进行计数
      count_obj (Chambers, Number)

    • 生成一个空的对象
      gen_empty_obj (WrongPill)

    • 生成一个空的对象
      gen_empty_obj (MissingPill)

    • for循环
      for I := 1 to Number by 1

      • 在对象数组中选取指定对象,之前例子已经讲过了
        select_obj (Chambers, Chamber, I)
      • 求交集
        intersection (Chamber, Pills, Pill)
      • 求取区域面积与中心坐标值
        area_center (Pill, Area, Row1, Column1)

      if (Area > 0)
      * 求取最大最小的灰度值,之前例子已经讲过了
      min_max_gray (Pill, ImageB, 0, Min, Max, Range)
      if (Area < 3800 or Min < 60)
      * 联合对象,上边有介绍
      concat_obj (WrongPill, Pill, WrongPill)
      endif
      else
      * 联合对象,上边有介绍
      concat_obj (MissingPill, Chamber, MissingPill)
      endif
      endfor

    • 下面的就是显示了
      dev_clear_window ()
      dev_display (ImageAffinTrans)
      dev_set_color (‘forest green’)
      count_obj (Pills, NumberP)
      count_obj (WrongPill, NumberWP)
      count_obj (MissingPill, NumberMP)
      dev_display (Pills)
      if (NumberMP > 0 or NumberWP > 0)
      disp_message (WindowHandle, ‘Not OK’, ‘window’, 10, 10 + 600, ‘red’, ‘true’)
      else
      disp_message (WindowHandle, ‘OK’, ‘window’, 10, 10 + 600, ‘forest green’, ‘true’)
      endif
      disp_message (WindowHandle, '# correct pills: ’ + (NumberP - NumberWP), ‘window’, 10, 10, ‘black’, ‘true’)
      disp_message (WindowHandle, '# wrong pills : ’ + NumberWP, ‘window’, 10 + 25, 10, ‘black’, ‘true’)
      if (NumberWP > 0)
      disp_message (WindowHandle, NumberWP, ‘window’, 10 + 25, 10 + 180, ‘red’, ‘true’)
      endif
      disp_message (WindowHandle, '# missing pills: ’ + NumberMP, ‘window’, 10 + 50, 10, ‘black’, ‘true’)
      if (NumberMP > 0)
      disp_message (WindowHandle, NumberMP, ‘window’, 10 + 50, 10 + 180, ‘red’, ‘true’)
      endif
      dev_set_color (‘red’)
      dev_display (WrongPill)
      dev_display (MissingPill)
      if (Index < Count)
      disp_continue_message (WindowHandle, ‘black’, ‘true’)
      endif
      stop ()
      endfor

处理思路

在这个例子是药品行业胶囊的检测,是比较经典的例子,我们下一篇文章介绍另一个胶囊检测例子。这个胶囊检测首先用到了仿射变换,把每个胶囊的单元提取出来,然后使用最简单的blob分析对缺陷进行提取。

后记

大家有什么问题可以向我提问哈,我看到了第一时间回复,希望在学习的路上多多结交良师益友。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值