opencv将32位深图片合成视频跳帧解决办法 在合成视频时候,大多数的图片都是24位深度的(即RGB三通道,一个通道8位),但是也存在少量的32位深的图片(RGBA,三个颜色通道加上A这个透明度通道),32位和24位的格式是不一样的,所以在合成视频的时候会跳过32位深图片的帧。应对上述合成视频时候出现32位的图片不合成,在后续检查的视频总帧数的才会发现,在工作中这个小失误可能造成大问题。这一行代码将32位深图片转换成了24位深的图片,就可以使用以下代码正常合成了。下图分别为24位深和32位深图片详情。
opencv 读取图片时含有中文路径报错: error: (-215:Assertion failed) !_src.empty() in function ‘cv::cvtColor‘ 将c2.imread()方法替换为cv2.imdecode()方法。出现这总错误是因为读取的图片路径或者图片名称含有中文。解决办法1:将路径和文件名称改为中文路径。
paddlepaddle2.bug解决 ``当在paddlepaddle2.的版本中按照paddlepaddle版本的写法,有以下报错的时候。AssertionError: In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and 'data()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' bef
解决python在linux上导包出现no module named ...的问题 解决办法:在py文件的开头加入三行代码import osBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))sys.path.insert(0, BASE_DIR)
解决tensorflow的bug 运行程序报错如下:tensorflow.python.framework.errors_impl.NotFoundError: No algorithm worked! [Op:Conv2D]问题出现的原因:批次跑的数据过多,所以要防止批次数据跑的太多爆内存,在文件开头写入一下代码。physical_devices = tf.config.experimental.list_physical_devices('GPU')assert len(physical_devices) > 0, "No
命名实体识别别中bio转换为bmes #文件读取 path = r'要转换的bio文件的文件地址'res_path = r'存放转换后文件的文件地址'#将文件转为双层列表的结构f = open(path,encoding='utf-8')f1 = open(res_path,"w+",encoding='utf-8')sentences = []sentence = []label_set = set()cnt_line = 0for line in f: cnt_line += 1 if len(lin
深拷贝与浅拷贝 涉及的知识点:对象,可变类型,引用python对象有三个类型:身份,类型,值身份就是对象的ID(),类型为TYPE(),值就是VALUE可变对象:列表,字典,集合;不可变对象数字,字符串,元组。可变是对象的值可变,但是身份不可变;不可变是对象的值和身份都不可变。引用:每个对象在内存中开辟一块空间,保存对象,该对象在内存中所在的位置成为引用。可变对象保存的不是真正的对象数据,而是引用。可变对象进行赋值的时候,将可变对象中保存的引用指向了新的对象。浅拷贝:copy()函数在拷贝对象的时候,只是将
TCP/IP模型 美国国防部高级研究计划局1969年在研究ARPANET时提出了TCP/IP模型。TCP/IP作为Internet的核心协议,已经广泛的应用于局域网和广域网中,目前已成为事实上的国际标准。TCP/IP包含的特征主要在5个方面:逻辑编址、路由选择、域名解析、错误检测和流量控制以及对应程序的支持等。TCP/IP分层模型由四层构成,从高到低各个层次依次为应用层、传输层、网际层和网络接口层。各层的功能如下。(1)应用层。应用于分层模型的最高层,用户调用应用程序来访问TCP/IP互联网络,以享受网络上提供的各种
代码练习-3 正整数A和正整数B 的最小公倍数是指能被A和B整除的最小的正整数值,设计一个算法,求输入A和B的最小公倍数。while True: try: a, b = [int(x) for x in input().split()] if a < b: a, b = b, a for i in range(b): if ((a * (i + 1)) % b == 0):
代码练习-1 输入描述:输入一行,代表要计算的字符串,非空,长度小于5000。输出描述:输出一个整数,表示输入字符串最后一个单词的长度。def func(input_words): # n = len(input_words.split(' ')) res_str = input_words.split(' ')[-1] # n = len(res_str) count = 0 for i in res_str: count += 1 return
算法-快速排序 简述快速排序过程1)选择一个基准元素,通常选择第一个元素或者最后一个元素,2)通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的元素值比基准值大。3)此时基准元素在其排好序后的正确位置4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。...
机器学习-马尔可夫模型与隐马尔可夫模型 马尔可夫模型马尔可夫过程是满足无后效性的随机过程。假设一个随机过程中,tnt_ntn时刻的状态XnX_nXn的条件分布,仅仅与其前一个状态xn−1x_{n-1}xn−1有关,即P(xn∣x1,x2...xn−1)=P(xn∣xn−1)P(x_n|x_1,x_2...x_{n-1}) = P(x_n|x_{n-1})P(xn∣x1,x2...xn−1)=P(xn∣xn−1),则称之为马可夫过程,时间和状态的取值都是离散的马尔可夫过程称之为马可夫链。隐马尔可夫模型隐马尔可夫模型是对含有
图像算法-CRNN+CTC-1 特点(1)与大多数现有的组件需要单独训练和协调的算法相比,它是端对端训练的。(2)它自然地处理任意长度的序列,不涉及字符分割或水平尺度归一化。(3)它不仅限于任何预定义的词汇,并且在无词典和基于词典的场景文本识别任务中都取得了显著的表现。(4)它产生了一个有效而小得多的模型,这对于现实世界的应用场景更为实用。网络结构卷积层:从输入图像中提取特征序列;循环层,预测每一帧的标签分布;转录层,将每一帧的预测变为最终的标签序列。特征提取在CRNN模型中,通过采用标准CNN模型(去除全连接层)中
图像算法-Yolov3 简介YOLOv3总结了自己在YOLOv2的基础上做的一些尝试性改进,有的尝试取得了成功,而有的尝试并没有提升模型性能。其中有两个值得一提的亮点,一个是使用残差模型,进一步加深了网络结构;另一个是使用FPN架构实现多尺度检测。改进新的网络结构:DarkNet-53;使用逻辑回归代替softmax作为分类器;融合了特征金字塔网络,实现多尺度检测多尺度预测实现:YOLOv3在基本特征提取器上添加几个卷积层,其中最后一个卷积层预测了一个三维张量——边界框,目标和类别预测。 在COCO实验中,为每个尺度