论文笔记

论文笔记 — AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect Recognition

论文题目:AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting
Depression with AI, and Cross-Cultural Affect Recognition(AVEC 2019研讨会和挑战:心态,检测抑郁与人工智能,跨文化影响识别)
论文作者:Fabien Ringeval,Björn Schuller∗,Michel Valstar,Nicholas Cummins,Roddy Cowie,Leili Tavabi,Maximilian Schmitt,Sina Alisamir,Shahin Amiriparian,Eva-Maria Messner,Siyang Song,Shuo Liu,Ziping Zhao,Adria Mallol-Ragolta,Zhao Ren,Mohammad Soleymani,Maja Pantic†

摘要

The Audio/Visual Emotion Challenge and Workshop (AVEC 2019)这个比赛,旨在比较多媒体处理和机器学习方法的自动视听健康和情感分析。
本文介绍了今年介绍的主要创新点、挑战指南、所使用的数据以及基线系统在三项拟议任务上的表现:精神状态识别(SoMS), 抑郁评估与人工智能(DDS),和跨文化影响感知(CES)。【注:本篇博客将主要描述抑郁评估与人工智能】

介绍

AVEC-2019:旨在比较用于自动音频、视觉和视听健康和情感感知的多媒体处理方法和机器学习方法 。AVEC系列的目标之一是将来自不同学科的多个社区聚集在一起,特别是视听多媒体社区和那些在心理和社会科学研究表达行为;另一个目标是通过为多模态信息处理提供一个共同的基准测试集来推进健康和情感识别系统。
数据特点:为了比较在明确的条件下自动健康和情感分析方法的相对优点,采用的数据是具有大量的完全自然行为的未分割的、非原型的和非预先选择的数据。
人工智能抑郁检测(DDS):其中抑郁严重程度(PHQ-8问卷)是从与进行临床访谈的虚拟代理人互动的患者的视听记录中评估的。DAIC数据集包含同一批患者的新记录࿰

### YOLOv11 论文笔记与分析 #### 关键架构增强功能概述 YOLOv11引入了一系列创新性的改进措施来提升模型性能和效率。这些改进不仅增强了检测精度,同时也提高了推理速度[^1]。 #### 主要技术特点 - **多尺度预测**:通过采用不同大小的感受野来进行特征提取,使得网络能够更好地捕捉到各种尺寸的对象。 - **自适应锚框机制**:动态调整预设边界框的比例尺,从而更精准地匹配实际物体形状。 - **注意力模块集成**:利用通道间依赖关系以及空间位置信息的重要性差异,进一步优化了特征表示能力。 - **轻量化设计思路**:在保持高准确率的同时尽可能减少参数量与计算成本,适用于资源受限环境下的部署应用。 #### 后处理策略 对于每一个候选区域(bounding box),其最终得分由两部分组成:一是该区域内存在目标物的可能性;二是给定此前提下属于特定分类的概率值乘积形式表达。这有助于筛选出最有可能为目标实体的位置并去除冗余重叠项[^5]。 ```python def calculate_final_score(confidence, class_probabilities): """ Calculate final score for each bounding box. Args: confidence (float): Confidence that an object exists within the bbox. class_probabilities (list[float]): Probabilities of different classes given there's an object. Returns: list[float]: Final scores indicating which category it truly belongs to with highest likelihood. """ return [confidence * prob for prob in class_probabilities] ``` #### 泛化能力 得益于全局视野的优势,即输入数据为完整的图像而非局部裁剪片段,因此即使面对未曾见过的新场景时也能表现出较强的鲁棒性和稳定性[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值