python机器学习——线性回归

import pandas as pd
#df=pd.read_csv('data_singlevar.txt',sep=',',header=None)

f=open('F:/python/4python机器学习经典案例/Python-Machine-Learning-Cookbook-master/Chapter01/data_singlevar.txt')
df=pd.read_csv(f,sep=',',header=None)

X=df.iloc[:,0].values
y=df.iloc[:,1].values

num_training=int(0.8*len(X))#80%的个数
num_test=len(X)-num_training#剩下的个数
#训练数据
X_train=X[:num_training].reshape((num_training,1))
y_train=y[:num_training]
#测试数据
X_test=X[num_training:].reshape((num_test,1))
y_test=y[num_training:]

from sklearn import linear_model
#创建线性回归对象
linear_regressor=linear_model.LinearRegression()
#用训练数据集训练模型
linear_regressor.fit(X_train,y_train)

import matplotlib.pyplot as plt
y_train_pred=linear_regressor.predict(X_train)#通过x(训练)预测y
plt.scatter(X_train,y_train,color='g')
plt.scatter(X_train,y_train_pred,color='b')
plt.plot(X_train,y_train_pred,'r-')
plt.title('training.data')

fig=plt.figure()
y_test_pred=linear_regressor.predict(X_test)#通过x(测试)预测y
plt.scatter(X_test,y_test,color='g')
plt.plot(X_test,y_test_pred,'bo-')
plt.title('testing.data')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值