自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 资源 (10)
  • 收藏
  • 关注

原创 支持向量机(SVM)中对偶问题的理解

在硬间隔支持向量机中,问题的求解可以转化为凸二次规划问题: (1)(1)minw,b12||w||2(2)s.t.yi(wTxi+b)≥1,i=1,2,⋯,m." role="presentation" style="position: relative;">minw,b12||w||2s.t.yi(wTxi+b)≥1,i=1,2,⋯,m.(1)(2)(1)(1)(1

2017-12-26 15:19:52 3041 4

原创 支持向量机

支持向量机(support vector machines,SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化算法。关于支持

2017-12-22 17:57:58 988

原创 决策树

决策树学习通常包括三个步骤:特征选择、决策树的生成和决策树的修剪。特征选择信息增益:“信息熵”(information entropy)是度量样本集合纯度最常用的一种指标。 信息增益:假定离散属性a有V个可能的取值{a1, a2, …, av}, 若使用a来对样本集D进行划分,则信息增益计算公式为: 我们可以使用信息增益来进行决策树的划分属性选择,ID3算法就是使用的该方法。增益率: a信息增

2017-12-21 11:07:35 2317

原创 EM算法实例及python实现

算法实例原地址:What is the expectation maximization algorithm? 现在有两个硬币A和B,要估计的参数是它们各自翻正面(head)的概率。观察的过程是先随机选A或者B,然后扔10次。以上步骤重复5次。如果知道每次选的是A还是B,那可以直接估计(见下图a)。如果不知道选的是A还是B(隐变量),只观测到5次循环共50次投币的结果,这时就没法直接估计A和B的正

2017-12-18 17:59:09 8373 2

原创 朴素贝叶斯

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。贝叶斯公式:P(A|B) = P(B|A) P(A)/ P(B)条件独立性假设:朴素贝叶斯使用特征条件独立假设的原因:个人理解是为了解决高维度带来的数据稀疏性。朴素贝叶斯有效的解释:有些独立假设在各个分类之间的分布都是均匀的所以对于似然的相对大小不产生影响;即便不是如此,也有很大的可能性各个独立假设所产生的消极影响或积极影响互相抵消,最终导致

2017-12-20 16:16:46 332

原创 K近邻算法

给定一个训练数据集,对新的输入实例,在训练数据集中找到跟它最近的k个实例,根据这k个实例的类判断它自己的类(一般采用多数表决的方法) 距离度量: 一般使用欧氏距离,也可以使用其他距离。 k值的选择:k较小,容易被噪声影响,发生过拟合。k较大,较远的训练实例也会对预测起作用,容易发生错误。 分类决策规则:多数表决(应该也可以根据距离使用带权重的表决方式)。 主要问题:如何快速的进行k近邻搜索。

2017-12-20 11:20:52 1438 2

原创 感知机

感知机是二分类线性分类模型, 其输入为实例的特征向量, 输出为实例的类别, 取+1和-1二值。感知机公式: 感知机的几何解释是,线性方程w*x+b=0 将特征空间划分为正负两个部分: 损失函数如果训练集是可分的,感知机的学习目的是求得一个能将训练集正实例点和负实例点完全分开的分离超平面。为了找到这样一个平面(或超平面),即确定感知机模型参数w和b,我们采用的是损失函数,同

2017-12-19 14:18:58 953

原创 Anaconda 安装OpenCV

import cv2报错:ImportError: No module named 'cv2'解决办法:安装opencv。conda install -c menpo opencvpip安装方法应该类似。更多其他安装方法:How do I install Python OpenCV through Conda?

2017-12-15 10:12:52 31976 3

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Abstract. Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity, i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for efficient network de- sign. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation experiments verify that our model is the state- of-the-art in terms of speed and accuracy tradeoff.

2018-12-03

An Extremely Efficient Convolutional Neural Network for Mobile Devices

Abstract We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuf- fle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior perfor- mance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on Ima- geNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ∼13× actual speedup over AlexNet while main- taining comparable accuracy.

2018-12-03

Fine-Grained Head Pose Estimation Without Keypoints

Abstract Estimating the head pose of a person is a crucial prob- lem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the tar- get face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detec- tion performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to deter- mine pose by training a multi-loss convolutional neural net- work on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) di- rectly from image intensities through joint binned pose clas- sification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose meth- ods. We open-source our training and testing code as well as release our pre-trained models 1 .

2018-12-03

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Abstract In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art perfor- mance of mobile models on multiple tasks and bench- marks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. is based on an inverted residual structure where the shortcut connections are between the thin bottle- neck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demon- strate that this improves performance and provide an in- tuition that led to this design. Finally, our approach allows decoupling of the in- put/output domains from the expressiveness of the trans- formation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.

2018-12-03

DSFD: Dual Shot Face Detector

Abstract Recently, Convolutional Neural Network (CNN) has achieved great success in face detection. However, it re- mains a challenging problem for the current face detection methods owing to high degree of variability in scale, pose, occlusion, expression, appearance and illumination. In this paper, we propose a novel face detection network named Dual Shot face Detector(DSFD), which inherits the archi- tecture of SSD and introduces a Feature Enhance Module (FEM) for transferring the original feature maps to extend the single shot detector to dual shot detector. Specially, Pro- gressive Anchor Loss (PAL) computed by using two set of anchors is adopted to effectively facilitate the features. Ad- ditionally, we propose an Improved Anchor Matching (IAM) method by integrating novel data augmentation techniques and anchor design strategy in our DSFD to provide better initialization for the regressor. Extensive experiments on popular benchmarks: WIDER FACE (easy: 0.966, medium: 0.957, hard: 0.904) and FDDB ( discontinuous: 0.991, continuous: 0.862) demonstrate the superiority of DSFD over the state-of-the-art face detectors (e.g., PyramidBox and SRN). Code will be made available upon publication.

2018-12-03

cascade r-cnn paper

In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection per- formance tends to degrade with increasing the IoU thresh- olds. Two main factors are responsible for this: 1) over- fitting during training, due to exponentially vanishing pos- itive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the in- put hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these prob- lems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selec- tive against close false positives. The detectors are trained stage by stage, leveraging the observation that the out- put of a detector is a good distribution for training the next higher quality detector. The resampling of progres- sively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reduc- ing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challeng- ing COCO dataset. Experiments also show that the Cas- cade R-CNN is widely applicable across detector architec- tures, achieving consistent gains independently of the base- line detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.

2018-12-03

深度学习 最新中文版 pdf

深度学习书籍 2017年9月的最新高清pdf版, beta版 第一章 引言 1 1.1 本书面向的读者 . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 深度学习的历史趋势 . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 神经网络的众多名称和命运变迁 . . . . . . . . . . . 12 1.2.2 与日俱增的数据量 . . . . . . . . . . . . . . . . . . . 17 1.2.3 与日俱增的模型规模 . . . . . . . . . . . . . . . . . . 19 1.2.4 与日俱增的精度、复杂度和对现实世界的冲击 . . . . 22

2018-01-15

How to Write makefile

makefile文件的编写,How to Write makefile.pdf 。全英文版本。

2015-07-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除