支持向量机(SVM)中对偶问题的理解

在硬间隔支持向量机中,问题的求解可以转化为凸二次规划问题:

minw,b12||w||2s.t.yi(wTxi+b)1,i=1,2,,m.(1)(2)(1) (1) (1) min w , b 1 2 | | w | | 2 (2) s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , ⋯ , m .

如何得到该式的可参考: 支持向量机

理解一

minw,bmaxαi0{12||w||2+i=1mαi(1yi(wTxi+b))}(2) (2) min w , b max α i ≥ 0 { 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) }

上式等价于原问题,因为若满足(1)中不等式约束,则(2)式求max时, αi(1yi(wTxi+b)) α i ( 1 − y i ( w T x i + b ) ) 必须取0,与(1)等价;若不满足(1)中不等式约束,(2)中求max会得到无穷大。
交换min和max获得其对偶问题
maxαi0minw,b{12||w||2+i=1mαi(1yi(wTxi+b))} max α i ≥ 0 min w , b { 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) }

交换之后的对偶问题和原问题并不相等,直观地,我们可以这样来理解:胖子中最瘦的那个都比瘦子中最胖的那个要胖。故上式的解小于等于原问题的解。当然这是很不严格的说法,而且扣字眼的话可以纠缠不休,所以我们还是来看其他严格数学意义上的理解。

理解二

现在的问题是如何找到问题(1) 的最优值的一个最好的下界?

12||w||2<v1yi(wTxi+b)0(3) (3) 1 2 | | w | | 2 < v 1 − y i ( w T x i + b ) ≤ 0

若方程组(3)无解, 则v是问题(1)的一个下界。

若(3)有解, 则

α>0, minw,b{12||w||2+i=1mαi(1yi(wTxi+b))}<v ∀ α > 0 ,   min w , b { 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) } < v

由逆否命题得:若

α>0, minw,b{12||w||2+i=1mαi(1yi(wTxi+b))}v ∃ α > 0 ,   min w , b { 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) } ≥ v

则(3)无解。

那么v是问题(1)的一个下界。
要求得一个好的下界,取最大值即可

maxαi0minw,b{12||w||2+i=1mαi(1yi(wTxi+b))} max α i ≥ 0 min w , b { 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) }

理解三


L(w,b,a)=12||w||2+i=1mαi(1yi(wTxi+b)) L ( w , b , a ) = 1 2 | | w | | 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) )

p p ∗ 为原问题的最小值,对应的 w w b分别为 w w ∗ b b ∗ ,则对于任意的 a>0 a > 0

p=12||w||2L(w,b,a)minw,bL(w,b,a) p ∗ = 1 2 | | w ∗ | | 2 ≥ L ( w ∗ , b , a ) ≥ min w , b L ( w , b , a )

那么 minw,bL(w,b,a) min w , b L ( w , b , a ) 是问题(1)的一个下界。

要求得一个好的下界,取最大值即可

maxαi0minw,bL(w,b,a) max α i ≥ 0 min w , b L ( w , b , a )

参考:如何通俗地讲解对偶问题

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值