应力波波阵面上的动量守恒条件

封面图:【荷】伦勃朗 (1606–1669),《天使拉斐尔离开托比特家族》,1637年,收藏于巴黎卢浮宫

本文先讨论开口系的动量守恒定律,重点介绍有强间断特性的冲击波波阵面上的动量守恒,然后过渡至连续波情形。波阵面上动量守恒的物理意义可参考 波阵面上动量守恒的物理意义

1. 开口系的动量守恒定律

开口系的动量守恒定律表述为:

在任一时刻,开口系体系的动量变化率 = 该时刻体系所受外力矢量和 + 外界向体系的动量纯流入率

考虑初始面积为 A 0 A_0 A0、初始质量为 ρ 0 \rho_0 ρ0的一维杆中的纵波传播,在杆中取一个处于两截面之间的体系,这两个截面的拉格朗日坐标分别为 X 1 ( t ) X_1(t) X1(t) X 2 ( t ) X_2(t) X2(t),只要 X 1 ( t ) X_1(t) X1(t) X 2 ( t ) X_2(t) X2(t)随时间变化,此体系就是开口系;否则是闭口系。

考虑一个开口系,记为 ( X 1 ( t ) , X 2 ( t ) ) (X_1(t),X_2(t)) (X1(t),X2(t)),此开口系的动量守恒写为:

d d ∫ X 1 ( t ) X 2 ( t ) ρ 0 A 0 v ( X , t ) d X = A 0 ( σ 2 − σ 1 ) + ρ 0 A 0 d X 2 d t v 2 − ρ 0 A 0 d X 2 d t v 1 ( 1 ) \frac{\rm d}{\rm d} \int_{X_1(t)}^{X_2(t)} \rho_0 A_0 v(X,t){\rm d}X = A_0(\sigma_2 - \sigma_1) + \rho_0 A_0 \frac{{\rm d} X_2}{{\rm d} t}v_2 -\rho_0 A_0 \frac{{\rm d} X_2}{{\rm d} t}v_1 \quad \quad (1) ddX1(t)X2(t)ρ0A0v(X,t)dX=A0(σ2σ1)+ρ0A0dtdX2v2ρ0A0dtdX2v1(1)

当取 X 1 ( t ) = X 2 ( t ) = X ∗ ( t ) X_1(t)=X_2(t)=X_*(t) X1(t)=X2(t)=X(t)时,恰好为冲击波的波阵面,当此开口系为附着在波阵面上的一个无限薄的薄层,有:

d X 1 ( t ) d t = d X 2 ( t ) d t = d X ∗ ( t ) d t = C ( 2 ) \frac{{\rm d}X_1(t)}{{\rm d}t} =\frac{{\rm d}X_2(t)}{{\rm d}t} =\frac{{\rm d}X_*(t)}{{\rm d}t} =C \quad \quad (2) dtdX1(t)=dtdX2(t)=dtdX(t)=C(2)

式(2)恰好为波阵面的拉格朗日波速,记为 C C C,且动量守恒方程式(1)左端为零。在贴近波阵面的紧前方和紧后方,介质应力和质点速度的跳跃量分别记为 σ 1 − σ 2 = [ σ ] \sigma_1 - \sigma_2 = [\sigma] σ1σ2=[σ] v 1 − v 2 − [ v ] v_1 - v_2 - [v] v1v2[v],于是式(1)写为:

[ σ ] = − ρ 0 C [ v ] ( 3 ) [\sigma] =-\rho_0 C[v] \quad \quad (3) [σ]=ρ0C[v](3)

式(3)成立的基础是附着在波阵面上的无限薄层动量守恒,也称为波阵面上的动量守恒条件,它将跨越波阵面时的质点速度跳跃量和应力跳跃量联系起来。类似地,以上结论也可由闭口系的动量守恒方程导出,此处略。

2. 冲击波和连续波的分类

为了继续讨论,这里需要区分冲击波和连续波的概念。在数学上,波阵面是一个奇异面(singular surface),当跨过这个奇异面时介质中的某些物理量发生间断。
把受扰动部分和未受扰动部分的分界面(或新被扰动的部分和旧的被扰动的部分),称为波阵面(wave front)。

在连续介质力学中,我们考虑无裂纹的情况,即保证位移是连续的。区分如下情形:
(1)把跨过波阵面位移连续、但一阶导数发生间断的波阵面称为一阶奇异面,也称为强间断波(strong discontinuity wave)、冲击波(shock wave),此处位移的一阶导数主要指质点速度、应变(与之相连的应力);

(2)把跨过波阵面位移、位移的一阶导数连续,但是位移的二阶导数间断的波阵面称为二阶奇异面,也称为弱间断波(weak discontinuity wave)、连续波(continuity wave)、加速度波,此处位移的二阶导数主要指加速度、应变梯度、应变率。

3. 一个注记:应力波波速

应力波在介质中的传播速度称为波速(wave speed),特别地,波速是指应力扰动信号的传播速度,这个概念与波扰动引起的介质本身质点的质点速度是完全不同的。一般后者远小于前者,且二者方向可能不同(李永池,2018)。

4. 应力波波速的定义

为了对右/左行波的波速表述形式统一,将 C C C定义为波速的绝对值,对于左/右行波均有以下重新定义的波速(基于式(3)):

[ σ ] = ρ 0 C 2 [ ε ] ( 4 ) [\sigma] = \rho_0 C^2 [\varepsilon] \quad \quad (4) [σ]=ρ0C2[ε](4)

式中 ε \varepsilon ε 为工程应变,表示为 ε = ( ∂ u / ∂ X ) ∣ t \varepsilon =(\partial u/\partial X)|_t ε=(u/X)t,下标表示保持时间不变求导。于是可反解 C C C

C = [ σ ] ρ 0 [ ε ] ( 5 ) C = \sqrt{\frac{[\sigma]}{\rho_0 [\varepsilon]}} \quad \quad (5) C=ρ0[ε][σ] (5)

5. 连续波的波阵面动量守恒条件

以上讨论是针对冲击波而言的,即强间断波,对于连续波(弱间断波),可将其视为由无穷多个无限小的增量波依次构成的,则跨过每一个增量波的扰动量可由其微分表达,于是式(3)(4)写为:

d σ = ± ρ 0 C d v ( 6 a ) {\rm d} \sigma = \pm \rho_0 C {\rm d}v \quad \quad (6{\rm a}) dσ=±ρ0Cdv(6a)
C = d σ ρ 0 d ε ( 6 b ) C = \sqrt{\frac{{\rm d}\sigma}{\rho_0 {\rm d} \varepsilon}}\quad \quad (6{\rm b}) C=ρ0dεdσ (6b)

式中正、负号分别表示左、右行波。

参考资料

  • 波阵面上动量守恒的物理意义
  • Achenbach, J., 1973. Wave propagation in elastic solids.
  • North-Holland Publishing Company.
  • 李永池, 2018. 波动力学(第二版). 中国科学技术大学出版社.
  • 王礼立. 2023. 应力波基础(第三版). 国防工业出版社.
  • 14
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值