应力波波阵面上的能量守恒条件

本文介绍波阵面上的能量守恒条件,并导出动能和内能的表达式。可以根据文章应力波波阵面上的动量守恒条件
中关于动量守恒方程的推导过程,类似地导出开放系波阵面的能量守恒方程。此处采用另一种方法,即闭口系的能量守恒。这种处理可以加深对物理意义的理解。

1. 系统的能量守恒定律

闭口系的能量守恒方程为:
d U + d K = d W ∗ + d Q ( 1 ) {\rm d}U + {\rm d}K ={\rm d}W^* +{\rm d}Q \quad \quad (1) dU+dK=dW+dQ(1)

式中 d U {\rm d}U dU d K {\rm d}K dK分别表示任意时间间隔 d t {\rm d}t dt内的闭口体系内能增量和动能增量; d W ∗ {\rm d}W^* dW d Q {\rm d}Q dQ分别表示外部在时间间隔 d t {\rm d}t dt内对该体系所做的功和纯供热。由于波动过程极快,因此通常认为波动过程是绝热的,热效应 d Q {\rm d}Q dQ来不及影响波动。

对于不太剧烈的连续波波动过程,可视为绝热等熵(可逆的);对于剧烈的冲击波波动过程,可视为绝热熵增过程(不可逆的),也就是绝热冲击波。外部供热为零,则式(1):
d U + d K = d W ∗ ( 2 ) {\rm d}U + {\rm d}K ={\rm d}W^* \quad \quad (2) dU+dK=dW(2)

2. 波阵面上的能量守恒条件

初始面积为 A 0 A_0 A0、初始质量为 ρ 0 \rho_0 ρ0的一维杆中有一个拉格朗日波速为 C C C的冲击波,拉格朗日波阵面在 t t t t + d t t+{\rm d}t t+dt时刻分别到达拉格朗日坐标为 X X X X + C d t X+C{\rm d}t X+Cdt 的位置。

d t {\rm d}t dt时间段内冲击波扫过的一段杆介质视为闭口系,其质量为 ρ 0 A 0 C d t \rho_0 A_0 C {\rm d}t ρ0A0Cdt。冲击波的波阵面紧前方和紧后方的物理量记为 σ + , ε + , v + , e + \sigma^+,\varepsilon^+, v^+, e^+ σ+,ε+,v+,e+ σ − , ε − , v − , e − \sigma^-,\varepsilon^-, v^-, e^- σ,ε,v,e,分别表示工程应力、工程应变、质点速度、比内能。

则该闭口体系的绝热条件下能量守恒条件为:

ρ 0 A 0 C d t [ ( v − ) 2 2 + e − − ( v + ) 2 2 − e + ] = A 0 σ + v + d t − A 0 σ − v − d t ( 3 a ) \rho_0 A_0 C {\rm d}t \left[ \frac{(v^-)^2}{2} + e^- - \frac{(v^+)^2}{2} - e^+ \right] = A_0 \sigma^+ v^+ {\rm d}t - A_0 \sigma^- v^- {\rm d}t \quad \quad (3{\rm a}) ρ0A0Cdt[2(v)2+e2(v+)2e+]=A0σ+v+dtA0σvdt(3a)

约去 A 0 A_0 A0 d t {\rm d}t dt

ρ 0 C [ ( v − ) 2 2 + e − − ( v + ) 2 2 − e + ] = σ + v + − σ − v − \rho_0 C \left[ \frac{(v^-)^2}{2} + e^- - \frac{(v^+)^2}{2} - e^+ \right] = \sigma^+ v^+ - \sigma^- v^- ρ0C[2(v)2+e2(v+)2e+]=σ+v+σv

整理得:

1 2 ρ 0 C [ v 2 ] + ρ 0 C [ e ] = − [ σ v ] ( 3 b ) \frac{1}{2} \rho_0 C [v^2] + \rho_0 C [e] = -[\sigma v] \quad \quad (3{\rm b}) 21ρ0C[v2]+ρ0C[e]=[σv](3b)

式(3b)可视为极限意义下得单位时间内单位面积波阵面扫过得闭口体系能量守恒条件。符号 [ φ ] = φ − − φ + [\varphi] =\varphi^- - \varphi^+ [φ]=φφ+ 表示由前方至后方跨过波阵面的物理量 φ \varphi φ 跳跃量。

− [ σ v ] -[\sigma v] [σv] 恰好表示外力(面力)对此闭口系的功率,它可进一步分解为:

− [ σ v ] = − 1 2 ( v + + v − ) [ σ ] − 1 2 ( σ + + σ − ) [ v ] ( 4 ) -[\sigma v]=-\frac{1}{2}(v^+ +v^-)[\sigma] - \frac{1}{2}(\sigma^+ +\sigma^-)[v] \quad \quad (4) [σv]=21(v++v)[σ]21(σ++σ)[v](4)

式(4)的物理意义为,外力(面力)对闭口系的功率可分解为两项, 1 2 ( v + + v − ) \frac{1}{2}(v^+ +v^-) 21(v++v) 1 2 ( σ + + σ − ) \frac{1}{2}(\sigma^+ +\sigma^-) 21(σ++σ) 可分别理解为平均速度和平均应力。

3. 波阵面上的动能定理和内能

借助波阵面的动量守恒条件 [ σ ] = − ρ 0 C [ v ] [\sigma] =-\rho_0 C[v] [σ]=ρ0C[v] (参考 应力波波阵面上的动量守恒条件中的式(3)),结合式(3b)和(4),可得:

− 1 2 ( v + + v − ) [ σ ] = 1 2 ρ 0 C [ v 2 ] ( 5 a ) -\frac{1}{2}(v^+ +v^-)[\sigma] = \frac{1}{2}\rho_0 C [v^2]\quad \quad (5{\rm a}) 21(v++v)[σ]=21ρ0C[v2](5a)
− 1 2 ( σ + + σ − ) [ v ] = ρ 0 C [ e ] ( 5 b ) - \frac{1}{2}(\sigma^+ +\sigma^-)[v] =\rho_0 C [e]\quad \quad (5{\rm b}) 21(σ++σ)[v]=ρ0C[e](5b)

式(5a)和(5b)分别表示动能定理和内能,物理意义为:

(1)闭口系的动能变化率等于波阵面前后方的不均衡应力在波阵面前后方平均速度上的功率;

(2)闭口系的内能变化率等于波阵面前后方的平均应力在波阵面前后方速度差上的功率。即介质的内能就是应变能。

式(5a)和(5b)实际上是能量守恒式(3b)的两个分解式。

参考资料

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值