本文先讨论循环坐标的概念,引出广义动量,然后指出与循环坐标对应的广义动量是守恒量(循环平移坐标对应动量守恒,循环转动坐标对应动量矩守恒),最后讨论循环坐标的物理意义。
到目前为止我们主要关注的是如何导出动力学方程,而不是如何求解方程。实际是,求解方程是数学家研究的内容。一个有 n n n个自由度的力学系统,需要 n n n个关于时间的二阶偏微分方程来描述;于是方程组的解需要对事件进行两次积分,得到 2 n 2n 2n个积分常数。在某些情况下,需要提供 2 n 2n 2n个关于 q i q_i qi和 q ˙ i \dot{q}_i q˙i的初始条件。
实际上大多数问题是不可积的,即使我们不能得到解析解,也可以从运动系统中获取大量关于物理意义的信息,这有时可能比获得一个精确解更重要。例如本文讨论的内容并不求解任何运动方程,然而通过引入循环坐标的概念就可与普适性的守恒定律联系起来。
1. 循环坐标与守恒律
考虑一个质点的运动,它的运动由只与位置有关的势函数决定,即势函数 V = V ( q i ) V = V(q_i) V=V(qi),所以 ∂ V / ∂ q ˙ i = 0 \partial V/ \partial {\dot q}_i = 0 ∂V/∂q˙i=0,于是拉格朗日量对广义速度的偏微分:
∂ L ∂ q ˙ i = ∂ T ∂ q ˙ i − ∂ V ∂ q ˙ i = ∂ T ∂ q ˙ i = m i q ˙ i = p i \frac{\partial L}{\partial \dot{q}_i} = \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial V}{\partial \dot{q}_i} = \frac{\partial T}{\partial \dot{q}_i} = m_i \dot{q}_i = p_i ∂q˙i∂L=∂q˙i∂T<