一、初识Temperature:AI输出的"随机性调温器"
在玩转大模型API时,你是否遇到过这些抓狂时刻:
- 问天气回答得像个机器人,毫无生气
- 生成代码时突然冒出诗意的注释
- 续写故事时主角突然长出三头六臂
这些现象背后的"罪魁祸首",很可能就是今天的主角——Temperature参数!
1.1 参数定义
Temperature(温度参数)是控制AI生成文本随机性的关键参数,取值范围通常为0到1(部分模型支持更高)。简单来说:
- 低温度(接近0):AI变身严谨学霸,选择最可能的输出
- 高温度(接近1):AI化身狂野艺术家,拥抱创造性随机
1.2 数学模型简说
假设模型输出概率分布为:P = [0.7, 0.2, 0.1]
应用temperature公式后:
P_i' = exp(log(P_i)/temperature) / sum(exp(log(P_j)/temperature))
看不懂公式没关系,记住这个咖啡法则:
- 低温度像冰美式:保留原味,强化主风味
- 高温度像热可可:香气四溢,激发多样性
二、参数实战效果对比
2.1 温度值对照实验
我们以"天空是___"为例,观察不同tempe