推荐
文章平均质量分 89
胖头猫
这个作者很懒,什么都没留下…
展开
-
深度学习推荐系统——结构探索
AFM Attentional Factorization Machines,在 NFM 模型中加入注意力机制,通过加入注意力网络,对不同特征交叉的关注度不同,即在元素积操作中加入注意力得分 aija_{ij}aij,再进行池化。fAtt=∑(i,j)∈Rxaij(vi⊙vj)xixjf_{Att}=\sum_{(i,j) \in R_{x}}a_{ij}(v_{i}\odot v_{j})x_{i}x_{j}fAtt=(i,j)∈Rx∑aij(vi⊙vj)xixjDIN原创 2021-09-28 15:33:38 · 156 阅读 · 0 评论 -
深度学习推荐系统——特征工程
深度学习推荐模型演化方向:1)增加神经网络复杂程度:从最简单的单层神经网络模型 AutoRec,到经典的深度神经网络结构 Deep Crossing,主要的进化方式在于增加了深度神经网络的层数和结构复杂度。2)丰富特征交叉方式:例如改变了用户向量和物品向量互操作方式的 NeuralCF,定义了多种特生向量交叉操作的 PNN 模型。3)组合模型:主要是指 Wide&Deep 模型及其后续变种等,其思路是通过组合两种不同特点、优势互补的深度学习网络,提升模型的综合能力。4)FM 模型的深度学习.原创 2021-09-22 15:25:54 · 922 阅读 · 0 评论 -
传统推荐模型
协同过滤算法 从物品相似度和用户相似度角度出发,衍生出物品协同过滤(ItemCF)和用户协同过滤(UserCF),又衍生出矩阵分解模型(Matrix Factorization,MF)。 亚马逊协同过滤论文:Amazon.com recommendations: item-to-item collaborative filteringUserCF1)基于用户对其它商品的历史评价数据,和其他用户对这些商品的历史评价数据,组成共现矩阵(用户为行,商品为列,值为1、0、-1);2)找到与用户兴趣最相原创 2021-09-14 12:54:48 · 213 阅读 · 0 评论