多模分割
文章平均质量分 86
胖头猫
这个作者很懒,什么都没留下…
展开
-
医学图像多模分割论文列表2
TMI 2020??图像种类:目标器官:模型目标:关键词:方法:备注:TMI 2021MIA 2020MIA 2021原创 2022-04-12 20:08:07 · 2962 阅读 · 0 评论 -
医学图像多模分割论文列表
医学图像多模分割总结数据集汇总Baseline 选择方法总结原创 2020-03-05 19:57:40 · 1182 阅读 · 0 评论 -
[MIA2019-02]Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent
Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network合成医学图像具有几个重要的应用。例如,它们可用作跨模态图像配准的中介,或用作增强的训练样本以增强分类器的泛化能力。在这项工作中,我们提出了一种通用的跨模态综合方法,其...翻译 2020-03-01 21:47:29 · 486 阅读 · 0 评论 -
[MIA2019-01]Automatic brain labeling via multi-atlas guided fully convolutional networks
Automatic brain labeling via multi-atlas guided fully convolutional networks传统上,基于多图集的方法首先将多个图集注册到目标图像,然后将标签从标记的图集传播到未标记的目标图像。但是,配准步骤涉及非刚性对齐,这通常很耗时并且可能缺乏高精度。另外,基于补丁的方法在放宽对精确注册的需求方面已显示出希望,但它们通常需要使用手工制...翻译 2020-03-01 18:22:08 · 487 阅读 · 0 评论 -
[MIA2018-04]3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc L
3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images在这项工作中,我们的目标是开发一种基于全卷积网络(FCN)的自动且准确的方法,用于从多模态 3D MR 数...翻译 2020-03-01 12:04:44 · 570 阅读 · 0 评论 -
[MIA2018-01]Segmenting Hippocampal Subfields from 3T MRI with Multi-modality Images
Segmenting Hippocampal Subfields from 3T MRI with Multi-modality Images在本文中,我们提出了一种使用 3T 多模态 MR 图像的基于学习的自动海马子场分割方法,包括结构 MRI(T1,T2)和静止状态 fMRI(rs-fMRI)。分别提取外观特征和关系特征以捕获结构 MR 图像中的外观模式以及 rs-fMRI 中的连通性模式。...翻译 2020-03-01 10:30:03 · 356 阅读 · 0 评论 -
[MIA2013-12]A unified framework for cross-modality multi-atlas segmentation of brain MRI
A unified framework for cross-modality multi-atlas segmentation of brain MRI多图谱标签融合是一种强大的图像分割策略,在医学成像中正变得越来越流行。标准标签融合算法依赖于独立地图集和要分割的(目标)图像之间独立计算的成对配准。然后使用这些配准将地图集标签传播到目标空间,并将其融合为单个最终分割。这样的标签融合方案通常依赖于...翻译 2020-02-29 11:59:57 · 499 阅读 · 0 评论 -
[TMI2018-03]Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dict
Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning多模式医学成像越来越多地用于诊断检查或医学研究的一部分中对复杂疾病的综合评估。不同的成像模式可提供有关活组织的补充信息。但是,由于患者的不适感,成本增加,扫描时间延长和扫描仪不可用等不利因素,...翻译 2020-02-28 18:28:51 · 334 阅读 · 0 评论 -
[TMI2018-03]Multimodal MR Synthesis via Modality-Invariant Latent Representation
Multimodal MR Synthesis via Modality-Invariant Latent Representation我们提出了一种用于MRI合成的多输入多输出全卷积神经网络模型。该模型对丢失的数据具有鲁棒性,因为它受益于(但不需要)其他输入形式。该模型经过端到端训练,并学会将所有输入模态嵌入到共享的模态不变的潜在空间中。然后将这些潜在表示合并为单个融合表示,然后通过学习的解码...翻译 2020-02-28 15:41:46 · 684 阅读 · 0 评论 -
[TMI2018-10]Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery
Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery我们引入了一种针对 MR 肿瘤脑图像的新的多图集分割(MAS)框架。MAS 的基本思想是将来自多个正常脑图集的标签信息注册并融合到一个新的脑图像中进行分割。已经成功地提出了许多 MAS 方法。然而,它们大多数是为正常的脑部图像而...翻译 2020-02-28 15:13:30 · 748 阅读 · 0 评论 -
[TMI2019-02]Learning Cross-Modality Representations From Multi-Modal Images
Learning Cross-Modality Representations From Multi-Modal Images机器学习算法可以适应来自不同来源的数据,例如来自不同成像方式的数据。我们使用共享的类似自动编码器的卷积网络从多模态数据中学习通用表示形式,介绍并分析了三种用于无监督跨模态特征学习的技术。我们研究了一种特征归一化的形式,一种将跨模式差异最小化的学习目标以及模态辍学的情况,其...翻译 2020-02-27 17:38:20 · 605 阅读 · 0 评论 -
[TMI2019-05]HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation
HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation最近,密集的连接吸引了计算机视觉的广泛关注,因为它们促进了训练过程中的梯度流和隐式的深度监控。尤其是,DenseNet 以前馈的方式将每一层连接到其他每一层,并在自然图像分类任务中显示出令人印象深刻的性能。我们提出了 HyperDense...翻译 2020-02-27 17:30:44 · 1302 阅读 · 0 评论 -
[TMI2019-06]3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis
3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis为了最大程度地减少 PET 扫描固有的示踪剂辐射引起的潜在健康风险,从低剂量合成高质量的 PET 图像以减少辐射暴露是非常有意义的。本文提出了一种基于 3D 自动上下文的局部自适应方法多模态生成对抗网络模型(LA-GANs)可从低剂量合成高质量...翻译 2020-02-27 17:23:13 · 632 阅读 · 0 评论 -
[TMI2019-07]Ea-GANs: Edge-Aware Generative Adversarial Networks for CrossModality MR Image Synthesis
Ea-GANs: Edge-Aware Generative Adversarial Networks for CrossModality MR Image Synthesis为了利用来自多重成像模态的互补信息,跨模态 MR 图像合成引起了越来越多的研究兴趣。但是,大多数现有方法仅着眼于最小化像素/体素方向的强度差异,而忽略了图像内容结构的纹理细节,这影响了合成图像的质量。具体来说,我们集成了边...翻译 2020-02-27 16:34:18 · 1091 阅读 · 1 评论 -
[TMI2019-10]Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks
Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks获取具有多个不同对比度的相同解剖结构的图像会增加MR检查中可用的诊断信息的多样性。但是,扫描时间限制可能会阻止某些对比度的获取,并且某些对比度可能会被噪声和伪影破坏。在这种情况下,合成未获得或损坏的对比图可以提高诊断效用。对于...翻译 2020-02-27 11:06:16 · 1087 阅读 · 1 评论 -
[TMI2019-10]Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-M
Latent Representation Learning for Alzheimer’s Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data多模态数据中包含的补充信息的融合,磁共振成像(MRI),正电子发射断层扫描(PET)和遗传数据促进了阿尔茨海默病(AD)自动化诊断的进展。但是,基于...翻译 2020-02-26 19:44:34 · 801 阅读 · 0 评论 -
[TMI2020-01]Co-Learning Feature Fusion Maps From PET-CT Images of Lung Cancer
Learning Cross-Modality Representations From Multi-Modal Images翻译 2020-02-26 17:17:01 · 1464 阅读 · 1 评论 -
[MICCAI2019]Context-Aware Inductive Bias Learning for Vessel Border Detection in Multi-modal Intraco
MICCAI2019 多模分割相关论文笔记Context-Aware Inductive Bias Learning for Vessel Border Detection in Multi-modal Intracoronary Imaging多模式冠状动脉内成像已被证明具有强大的能力来帮助诊断冠状动脉疾病,然而由于血管所处的环境变化,即图像外观和组织形态不一致,在多模式图像分析中检测所有临...翻译 2020-02-21 10:37:30 · 357 阅读 · 0 评论 -
[MICCAI2019]Integrating Cross-modality Hallucinated MRI with CT to Aid Mediastinal Lung Tumor
MICCAI2019 多模分割相关论文笔记Integrating Cross-modality Hallucinated MRI with CT to Aid Mediastinal Lung Tumor Segmentation翻译 2020-01-10 20:49:22 · 381 阅读 · 0 评论 -
[MICCAI2019]Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation
MICCAI2019 多模分割相关论文笔记Learning Cross-Modal Deep Representations for Multi-Modal MR Image Segmentation基于 CNN 的多模 MR 图像分析通常会在一层或几层融合了多个下采样流,特征融合通常是通过简单的求和或串联进行的,而没有进行优化。作者提出了一种监督图像融合方法,以选择性地融合来自不同模态的有用...翻译 2020-01-10 20:35:44 · 1203 阅读 · 1 评论 -
[MICCAI2019]3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation
MICCAI2019 多模分割相关论文笔记3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation探索了一种有前途的通用体系结构,该体系结构可以处理多种医学分割任务,并且可以扩展用于新任务,而无需考虑不同的器官和成像方式。我们的3D通用U-Net(3D U2-Net)建立在可分离的卷积基础上,假设来自...翻译 2020-01-10 19:15:15 · 1794 阅读 · 0 评论 -
[MICCAI2019]Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT Using Two-Stream Chained
MICCAI2019 多模分割相关论文笔记Accurate Esophageal Gross Tumor Volume Segmentation in PET/CT Using Two-Stream Chained 3D Deep Network Fusion本文利用 RTCT 和正电子发射断层扫描(PET)成像方式来促进更准确的 GTV 分割。作者提出了一种双流链式分割方法,该方法通过基于 ...翻译 2020-01-09 16:32:10 · 441 阅读 · 0 评论 -
[MICCAI2019]Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From
MICCAI2019 多模分割相关论文笔记Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images在许多情况下很难获得多模式配对的配准图像。因此,开发一种可以用不成对的图像将不同形态的目标对象进行分割的模型对于许多临床应用而言意义重...翻译 2020-01-09 15:57:59 · 363 阅读 · 0 评论 -
[MICCAI2019]Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation
MICCAI2019 多模分割相关论文笔记Data Efficient Unsupervised Domain Adaptation For Cross-modality Image Segmentation深度无监督域自适应(UDA)旨在仅使用未标记的目标域数据和标记的源域数据来改善目标域上的深度神经网络模型的性能。作者为多域医学图像分割引入了一种新的数据有效的 UDA 方法。所提出的方法结合了...翻译 2020-01-08 18:41:52 · 566 阅读 · 1 评论 -
[MICCAI2019]Unsupervised Domain Adaptation via Disentangled Representations
MICCAI2019 多模分割相关论文笔记Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation由于来自域转移,对来自某个源域的标记数据进行训练的深度学习模型,通常在来自不同目标域的数据上表现较差。无监督域自适应方法通过减轻...翻译 2020-01-08 16:17:45 · 619 阅读 · 0 评论 -
[MICCAI2019]Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images
MICCAI2019 多模分割相关论文笔记Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images本文设计了Shape MAE(Multi-View Auto Encoder)结构来学习多视角下心脏形状的隐式表达;以及设计了分割网络 Multi-View Unet,能够结合MAE学习到的解剖形...翻译 2020-01-08 15:12:48 · 366 阅读 · 0 评论 -
[MICCAI2019]Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network
MICCAI2019 多模分割相关论文笔记Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network由于医学成像中手工标记的样本数量有限,FCN通常无法获得令人满意的结果。 在本文中作者提出了一种共轭全卷积网络(CFCN),通过将成对样本输入共同分割,以捕获丰富的上下文表示。设计融合模块提供额外的监督,避免少...翻译 2020-01-08 14:50:43 · 722 阅读 · 0 评论 -
[MICCAI2019]Multi-view Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis
MICCAI2019多模分割相关论文Multi-view Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis这篇文章主要用多视图深度学习方法,通过阴道镜检查的图像数据(醋酸图像和碘图像)进行多角度的诊断(CDD)。分析多视图医学图像数据的主要挑战是,如何有效地利用这些视图之间的有意义的相关性。作者开发了一种新...翻译 2020-01-06 16:07:28 · 825 阅读 · 1 评论