1. Getting a CLUE: A Method for Explaining Uncertainty Estimates
不确定性估计和可解释性交叉领域的工作,通过提出一种新方法 GLUE 来解释来自可微概率模型(如贝叶斯神经网络 (BNN))的不确定性估计,指示如何更改输入,同时将其保持在数据流形上,以便 BNN 对输入的预测更有信心(输入数据 OOD 造成的不确定性)。
2. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
对目前的不确定性估计方法做了全面的评价,ensemble 比其他方法好。模型理论上应该在 shifted dataset 上精度下降,entropy 增加。
Uncertainty 综述:
[1]. E. Hüllermeier and W. Waegeman, “Aleatoric and Epistemic Uncertainty in Machine Learning: A Tutorial Introduction,” ArXiv, vol. abs/1910.09457, 2019.
[2]. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information Fusion, 2021.
[3]. C. Gillmann, D. Saur, T. Wischgoll, and G. Scheuermann, “Uncertainty-aware Visualization in Medical Imaging-A Survey,” STAR, vol. 40, 2021.
[4]. J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, et al., “A Survey of Uncertainty in Deep Neural Networks,” arXiv preprint arXiv:2107.03342, 2021.
[5]. H. D. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi, “Neural network-based uncertainty quantification: A survey of methodologies and applications,” IEEE access, vol. 6, pp. 36218-36234, 2018.
CVPR2021
[1]. Uncertainty Guided Collaborative Training for Weakly Supervised Temporal Action Detection
[2]. Uncertainty-Aware Joint Salient Object and Camouflaged Object Detection
[3]. Dive Into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty Estimation for Facial Expression Recognition
[4]. Fusing the Old with the New: Learning Relative Camera Pose with Geometry-Guided Uncertainty
[5]. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection
[6]. Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
[7]. Embracing Uncertainty: Decoupling and De-Bias for Robust Temporal Grounding
[8]. Uncertainty-Guided Model Generalization to Unseen Domains
[9]. Improved Image Matting via Real-Time User Clicks and Uncertainty Estimation
[10]. Uncertainty Reduction for Model Adaptation in Semantic Segmentation
[11]. MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation
[12]. Masksembles for Uncertainty Estimation
[13]. Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive Compression
[14]. Post-Hoc Uncertainty Calibration for Domain Drift Scenarios
[15]. Uncertainty-Aware Camera Pose Estimation From Points and Lines
[16]. Fast Bayesian Uncertainty Estimation and Reduction of Batch Normalized Single Image Super-Resolution Network
ICML 2021
[17]. Uncertainty Principles of Encoding GANs
[18]. Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation
[19]. A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
[21]. Bayesian Deep Learning via Subnetwork Inference
[22]. Sparse Bayesian Learning via Stepwise Regression
[23]. Bayesian Attention Belief Networks
[24]. Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
[25]. Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces
[26]. On Recovering from Modeling Errors Using Testing Bayesian Networks
[27]. What Are Bayesian Neural Network Posteriors Really Like?
IPMI 2021
[28]. Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations
[29]. Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection
[30]. A Probabilistic Framework for Modeling the Variability Across Federated Datasets
[31]. Is Segmentation Uncertainty Useful?