程序设计思维与实践 Week3 作业 C 区间覆盖

题目描述:

数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1, t]( 1<=t<=1,000,000)。
覆盖整点,即(1,2)+(3,4)可以覆盖(1,4)。
不可能办到输出-1

输入:

第一行:N和T
第二行至N+1行: 每一行一个闭区间。

输出:

选择的区间的数目,不可能办到输出-1

说明:

该题为整数覆盖:区间[1,2]和区间[3,4]能够覆盖区间[1,4]

思路:

要想覆盖区间[1,t],则第一个选取的区间的起点一定是小于等于1的,终点一定是大于等于1的,否则,其他的区间没有任何意义。

则在所有符合上述条件的所有区间中,我们应该选取bi尽可能大的区间。这是因为,在最优解中,假设第一个区间的bi并不是最大的,那么如果我们在贪心解中选择bi最大的,则贪心解的结果显然不比最优解差。

在确立了第一步之后,那么问题就转化为了选取区间覆盖[b1,t],其本质和覆盖[1,t]没有任何区别。这样就构成了一种”递归“的想法,在本题中,我使用的是循环来模拟递归。

总结:

在作业B和C中,都用到了贪心算法证明过程中的:若每一步贪心解的结果都不比最优解局部的结果差,那么贪心解就是最优解。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,t,from,to,cur,flag,ans;
struct node
{
	int x;
	int y;
	bool operator <(const node&o)const
	{
		return x<o.x;
	}
}a[25010];
int main()
{
	while(scanf("%d%d",&n,&t)!=EOF)
	{
		from=1,cur=1;ans=0;
		for(int i=1;i<=n;i++)
		scanf("%d%d",&a[i].x,&a[i].y);
		sort(a+1,a+n+1);
		to=-2147483647;
		while(from<t+1)
		{
			flag=-1;
			for(int i=1;i<=n;i++)
			if(a[i].x<=from&&a[i].y>to)
			{
				flag=i;
				to=a[i].y;
			}
			if(flag==-1)
			{
				ans=-1;
				cout<<-1<<endl;
				break;
			}
			from=to+1;
			ans++;
		}
		if(ans!=-1)
		cout<<ans<<endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值