题目描述:
数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1, t]( 1<=t<=1,000,000)。
覆盖整点,即(1,2)+(3,4)可以覆盖(1,4)。
不可能办到输出-1
输入:
第一行:N和T
第二行至N+1行: 每一行一个闭区间。
输出:
选择的区间的数目,不可能办到输出-1
说明:
该题为整数覆盖:区间[1,2]和区间[3,4]能够覆盖区间[1,4]
思路:
要想覆盖区间[1,t],则第一个选取的区间的起点一定是小于等于1的,终点一定是大于等于1的,否则,其他的区间没有任何意义。
则在所有符合上述条件的所有区间中,我们应该选取bi尽可能大的区间。这是因为,在最优解中,假设第一个区间的bi并不是最大的,那么如果我们在贪心解中选择bi最大的,则贪心解的结果显然不比最优解差。
在确立了第一步之后,那么问题就转化为了选取区间覆盖[b1,t],其本质和覆盖[1,t]没有任何区别。这样就构成了一种”递归“的想法,在本题中,我使用的是循环来模拟递归。
总结:
在作业B和C中,都用到了贪心算法证明过程中的:若每一步贪心解的结果都不比最优解局部的结果差,那么贪心解就是最优解。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,t,from,to,cur,flag,ans;
struct node
{
int x;
int y;
bool operator <(const node&o)const
{
return x<o.x;
}
}a[25010];
int main()
{
while(scanf("%d%d",&n,&t)!=EOF)
{
from=1,cur=1;ans=0;
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
sort(a+1,a+n+1);
to=-2147483647;
while(from<t+1)
{
flag=-1;
for(int i=1;i<=n;i++)
if(a[i].x<=from&&a[i].y>to)
{
flag=i;
to=a[i].y;
}
if(flag==-1)
{
ans=-1;
cout<<-1<<endl;
break;
}
from=to+1;
ans++;
}
if(ans!=-1)
cout<<ans<<endl;
}
return 0;
}