【毕设选题】医学数据分析 中医乳腺癌数据分析与可视化

0 前言

🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 医学大数据分析 乳腺癌数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

背景

  • 中医药治疗乳腺癌有着广泛的适应证和独特的优势。从整体出发,调整机体气血、阴阳、脏腑功能的平衡,根据不同的临床证候进行辨证论治。确定“先证而治”的方向:即后续证侯尚未出现之前,需要截断恶化病情的哪些后续证侯。
  • 找出中医症状间的关联关系和诸多症状间的规律性,并且依据规则分析病因、预测病情发展以及为未来临床诊治提供有效借鉴。能够帮助乳腺癌患者手术后体质的恢复、生存质量的改善,有利于提高患者的生存机率。
  • 目前,中医治疗一般都是采用中医辨证的原则,结合临床医师的从医经验和医学指南进行诊断,然而此方法也存在一定的缺陷。

原始数据说明

患者信息属性说明,针对患者的信息,对每个属性进行相应说明。

![在这里插入图片描述](https://img-blog.csdnimg.cn/16ed2924435248028f248d1a7b62fa74.png?x-oss-
process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAQ0hSTuaZqA==,size_20,color_FFFFFF,t_70,g_se,x_16)

患者病理信息,包含患者的基本信息以及病理症状等。
![在这里插入图片描述](https://img-blog.csdnimg.cn/1f9aee43f06a4d5a9d29df8995f19cdf.png?x-oss-
process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAQ0hSTuaZqA==,size_20,color_FFFFFF,t_70,g_se,x_16)

挖掘目标

  1. 借助三阴乳腺癌患者的病理信息,挖掘患者的症状与中医证型之间的关联关系;
  2. 对截断治疗提供依据,挖掘潜性证素。

初步分析

1.针对乳腺癌患者,可运用中医截断疗法进行治疗,在辨病的基础上围绕各个病程的特殊证候先证而治型;

2.依据医学指南,将乳腺癌辨证统一化,为六种证型。且患者在围手术期、围化疗期、围放疗期和内分泌治疗期等各个病程阶段,基本都会出现特定的临床症状。

3.通过关联规则算法,挖掘各中医证素与乳腺癌TNM分期之间的关系。探索不同分期阶段的三阴乳腺癌患者的中医证素分布规律,以及截断病变发展、先期干预的治疗思路,指导三阴乳腺癌的中医临床治疗。

总体流程

数据预处理

属性规约

属性规约:删除不相关属性,选取其中六种证型得分、患者编号和TNM分期属性。
在这里插入图片描述

数据变换

属性构造

为了更好的反应出中医证素分布的特征,采用证型系数代替具体单证型的证素得分,证型相关系数计算公式如下:证型系数 = 该证型得分/该证型总分。
在这里插入图片描述

数据离散化

为了建模需要,需要对数据进行离散化。本例采用聚类算法对各个证型系数进行离散化处理,将每个属性聚成四类。

 #- _\- coding: utf-8 -_ -  
 ‘’’  
 聚类离散化,最后的result的格式为:  
 1 2 3 4  
 A 0 0.178698 0.257724 0.351843  
 An 240 356.000000 281.000000 53.000000(0, 0.178698]240个,(0.178698, 0.257724]356个,依此类推。  
 ‘’’  
 from **future** import print_function  
 import pandas as pd  
 from sklearn.cluster import KMeans #导入K均值聚类算法  

datafile = ‘C://Python//DataAndCode//chapter8//demo//中医证型的关联规则挖掘数据//data.xls’
#待聚类的数据文件  
processedfile = ‘…/tmp/data_processed.xls’ #数据处理后文件  
typelabel ={u’肝气郁结证型系数’:‘A’, u’热毒蕴结证型系数’:‘B’, u’冲任失调证型系数’:‘C’,
u’气血两虚证型系数’:‘D’, u’脾胃虚弱证型系数’:‘E’, u’肝肾阴虚证型系数’:‘F’}  
k = 4 #需要进行的聚类类别数


    
    #读取数据并进行聚类分析
    data = pd.read_excel(datafile) #读取数据
    keys = list(typelabel.keys())
    result = pd.DataFrame()

    if __name__ == '__main__': #判断是否主窗口运行,如果是将代码保存为.py后运行,则需要这句,如果直接复制到命令窗口运行,则不需要这句。
      for i in range(len(keys)):
        #调用k-means算法,进行聚类离散化
        print(u'正在进行“%s”的聚类...' % keys[i])
        kmodel = KMeans(n_clusters = k, n_jobs = 4) #n_jobs是并行数,一般等于CPU数较好
        kmodel.fit(data[[keys[i]]].as_matrix()) #训练模型
        
        r1 = pd.DataFrame(kmodel.cluster_centers_, columns = [typelabel[keys[i]]]) #聚类中心
        r2 = pd.Series(kmodel.labels_).value_counts() #分类统计
        r2 = pd.DataFrame(r2, columns = [typelabel[keys[i]]+'n']) #转为DataFrame,记录各个类别的数目
        r = pd.concat([r1, r2], axis = 1).sort(typelabel[keys[i]]) #匹配聚类中心和类别数目
        r.index = [1, 2, 3, 4]
        
        r[typelabel[keys[i]]] = pd.rolling_mean(r[typelabel[keys[i]]], 2) #rolling_mean()用来计算相邻2列的均值,以此作为边界点。
        r[typelabel[keys[i]]][1] = 0.0 #这两句代码将原来的聚类中心改为边界点。
        result = result.append(r.T)
    
      print(result.head())



构建中医证型关联规则模型

构建中医证型关联模型:采用关联规则算法,输入建模参数,探索乳腺癌患者TNM分期与中医证型系数之间的关系,挖掘他们之间的关联关系。
注:结合实际业务分析且需要多次设置,确定最小支持度与最小置信度。本例的输入参数为:最小支持度6%、最小置信度75%

流程图
![在这里插入图片描述](https://img-blog.csdnimg.cn/8446870f5c524d1da6f8d354d0a94f3d.png?x-oss-
process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAQ0hSTuaZqA==,size_20,color_FFFFFF,t_70,g_se,x_16)

 #- _\- coding: utf-8 -_ -  
 from **future** import print_function  
 import pandas as pd  
 from apriori import * #导入自行编写的apriori函数  
 import time #导入时间库用来计算用时  
  
inputfile = ‘…/data/apriori.txt’ #输入事务集文件  
data = pd.read_csv(inputfile, header=None, dtype = object)


   
    start = time.clock() #计时开始
    print(u'\n转换原始数据至0-1矩阵...')
    ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
    b = map(ct, data.as_matrix()) #用map方式执行
    data = pd.DataFrame(b).fillna(0) #实现矩阵转换,空值用0填充
    end = time.clock() #计时结束
    print(u'\n转换完毕,用时:%0.2f秒' %(end-start))
    del b #删除中间变量b,节省内存
    

    support = 0.06 #最小支持度
    confidence = 0.75 #最小置信度
    ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符
    
    start = time.clock() #计时开始
    print(u'\n开始搜索关联规则...')
    find_rule(data, support, confidence, ms)
    end = time.clock() #计时结束
    print(u'\n搜索完成,用时:%0.2f秒' %(end-start))



  
 #- _\- coding: utf-8 -_ -  
 from **future** import print_function  
 import pandas as pd  
  
#自定义连接函数,用于实现L_{k-1}到C_k的连接  
def connect_string(x, ms):  
x = list(map(lambda i:sorted(i.split(ms)), x))  
l = len(x[0])  
r = []  
for i in range(len(x)):  
for j in range(i,len(x)):  
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:  
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))  
return r

    #寻找关联规则的函数
    def find_rule(d, support, confidence, ms = u'--'):
      result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果

      support_series = 1.0*d.sum()/len(d) #支持度序列
      column = list(support_series[support_series > support].index) #初步根据支持度筛选
      k = 0
      
      while len(column) > 1:
        k = k+1
        print(u'\n正在进行第%s次搜索...' %k)
        column = connect_string(column, ms)
        print(u'数目:%s...' %len(column))
        sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
        
        #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
        d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
        
        support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
        column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
        support_series = support_series.append(support_series_2)
        column2 = []
        
        for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
          i = i.split(ms)
          for j in range(len(i)):
            column2.append(i[:j]+i[j+1:]+i[j:j+1])
        
        cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
     
        for i in column2: #计算置信度序列
          cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
        
        for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
          result[i] = 0.0
          result[i]['confidence'] = cofidence_series[i]
          result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
      
      result = result.T.sort(['confidence','support'], ascending = False) #结果整理,输出
      print(u'\n结果为:')
      print(result)
      
      return result

模型分析

TNM分期为H4期的三阴乳腺癌患者证型主要为肝肾阴虚证、热毒蕴结证、肝气郁结证和冲任失调,H4期患者肝肾阴虚证和肝气郁结证的临床表现较为突出,其置信度最大达到87.96%。
在这里插入图片描述
注:X表示各个证型系数范围标识组合而成的规则,Y表示TNM分期为H4期。A3表示肝气郁结证型系数处于(0.258,0.35]范围内的数值,B2表示热毒蕴结证型系数处于(0.15,0.296]范围内的数值,C3表示冲任失调证型系数处于(0.288,0.415]范围内的数值,F4表示肝肾阴虚证型系数处于(0.353,0.607]范围内的数值

总结

IV期患者出现肝肾阴虚证之表现时,应当以滋养肝肾为补,清热解毒为攻,攻补兼施,截断热毒蕴结证的出现。
患者多有肝气郁结证的表现,治疗时须重视心理调适,对其进行身心一体的综合治疗。

最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值