RMQ算法详解

rmq这个东西其实是可以用线段树来实现的但是毕竟rmq代码简单嘛

算法思路就是dp所以我们要开一个dp的全局变量

dp[i][j]就是以i开头长度为2^j的一段中最大的值

那么很容易的我们就可以推出状态转移方程

dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);

把dp数组求出来后我们就可以进行查询了,查询的方法就见代码了啊

初始化代码:

void rmq_init(int *a,int len)
{
    for(int i=1;i<=len;i++)
        dp[i][0]=a[i];
    for(int j=1;(1<<j)<=len;j++)
        for(int i=1;i+(1<<j)-1<=len;i++)
    dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);

}
查询代码


int rmq(int l,int r)
{
    int len=r-l+1;
    int k(0);
    while((1<<(k+1))<=len)
        k++;

    int ans;
    //printf("%d %d %d %d\n",l,l+(1<<k),r-(1<<k),r-(1<<k)+(1<<k));
    if (dp[l][k]>dp[r-(1<<k)+1][k])
        ans=dp[l][k];
    else ans=dp[r-(1<<k)+1][k];
    return ans;
}
注意!那个a数组一定要是从1开始的哦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值