一:排序的概念
1.1排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不断地在内外存之间移动数据的排序。
1.2常见的排序
常见的排序分为插入排序,选择排序,交换排序和归并排序,他们又分为以下的排序。
各个排序的动态演示Comparison Sorting Visualizationhttps://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
二:排序算法的代码实现
2.1插入排序
2.1.1插入排序的基本思想
直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
2.1.2直接插入排序
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
代码实现:
void InsertSort(int* a, int n)//插入排序
{
for (int i = 0; i < n - 1; i++)
{
{
int end=i;
int temp = a[end + 1];
while (end >= 0)
{
if (temp < a[end])
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = temp;
}
}
}
直接插入排序的特性总结:
1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定
2.1.3 希尔排序( 缩小增量排序 )
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。
希尔排序的代码实现:
这里暂时使用gap=gap/3+1。
//希尔排序
void xierSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int i = 0; i < n - gap; i++)
{
{
int end = i;
int temp = a[end + gap];
while (end >= 0)
{
if (temp < a[end])
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = temp;
}
}
}
}
希尔排序的特性总结:
1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定。
因为咋们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(n的1.3次方)来算。
2.2选择排序
2.2.1选择排序的基本思想
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
2.2.2直接选择排序
在元素集合array[i] -- array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换,在剩余的array[i] -- array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。
由于直接选择排序比较简单,所以我们直接写一个进阶的选择排序,也就是在元素集合array[i] -- array[n-1]中选择关键码最小和最大的数据元素,若它不是这组元素中的第一个和最后一个元素,则将它与这组元素中的第一个和最后一个元素交换在剩余的array[i+1] -- array[n-i-2]集合中,重复上述步骤,直到集合剩余1个元素。
代码实现如下:
void Selectsort(int* a, int n)
{
int begin = 0;
int end = n - 1;
while (begin < end)
{
int mini = begin, maxi = begin;
for (int i = begin + 1; i < end; i++)
{
if (a[i] > a[maxi])
{
maxi =i;
}
if (a[i] < a[mini])
{
mini = i;
}
}
swap(&a[begin], &a[mini]);
if (a[begin] == a[maxi])
{
maxi = mini;
}
swap(&a[end], &a[maxi]);
begin++;
end--;
}
}
void swap(int* p1, int* p2)
{
int temp = *p1;
*p1 = *p2;
*p2 = temp;
}
直接选择排序的特性总结:
1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定
2.2.3堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
排升序要用大堆,因为堆排序算法中,如果是升序排列,我们需要找到未排序区间中的最大值,然后将它与已排序区间的最后一个元素交换,这样未排序区间的最大值就被移到了已排序区间的末尾。为了实现这一过程,我们需要建立一个最大堆(大堆),这样堆顶元素就是未排序区间中的最大值。通过不断地将堆顶元素与未排序区间的最后一个元素交换,并进行堆的调整,最终可以实现整个序列的升序排列。
堆排序算法的基本思想是将待排序的序列构造成一个最大堆,然后将堆顶元素(最大值)与末尾元素进行交换,之后把剩余的元素重新调整为最大堆。这样反复执行,直到所有元素都被排序。
反之,排降序建小堆......
向上调整:
void Adjustup(HpDatatype*a,int child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
向下调整:
void Adjustdown(HpDatatype* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1 < n && a[child + 1] > a[child])
{
child++;
}
if (a[child] > a[parent])
{
swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
直接选择排序的特性总结:
1. 堆排序使用堆来选数,效率就高了很多。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(1)
4. 稳定性:不稳定
2.3交换排序
2.3.1交换排序的基本思想
基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
2.3.2冒泡排序
想必冒泡排序大家一定很熟悉了,直接上代码!
//冒泡排序
void MaoPaoSort(int* a,int ret)
{
int i = 0;
for (i = 0; i < ret - 1; i++)
{
int j = 0;
for (j = 0; j < ret - 1 - i; j++)
{
if (a[j] > a[j + 1])
{
swap(&a[j], &a[j+1]);
}
}
}
}
冒泡排序的特性总结:
1. 冒泡排序是一种非常容易理解的排序
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:稳定
2.3.3快排
快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
2.3.3.1Hoare版快排
代码实现如下:
oid QuickSort1(int* a, int left, int right)
{
int keyi = left;
int begin = left;
int end = right;
while (begin < end)
{
while (begin < end && a[end] >= a[keyi])
{
--end;
}
while (begin < end && a[begin] <= a[keyi])
{
++begin;
}
swap(&a[begin], &a[end]);
}
swap(&a[keyi], &a[begin]);
keyi = begin;
QuickSort1(a, left, keyi - 1);
QuickSort1(a, keyi + 1, right);
}
2.3.3.2 挖坑法
挖坑法与 Hoare差别不太,不做具体讲解。
2.3.3.3前后指针版快排
//两指针快排
int QuickSort2(int* a, int left, int right)
{
int keyi = left;
int prew = left;
int cur = prew + 1;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prew != cur)
{
swap(&a[prew], &a[cur]);
}
cur++;
}
swap(&a[prew], &a[keyi]);
return prew;
}
2.3.3.4快排优化
1. 三数取中法选key
此优化针对数组有序的情况,如果不进行此优化,快排的时间复杂度会变成O(n*n),效率变低。
int GetMidi(int* a, int left, int right)
{
int midi = (left + right) / 2;
if (a[midi] > a[left])
{
if (a[midi] < a[right])
{
return midi;
}
else if (a[midi] > a[right])
{
if (a[right] > a[left])
{
return right;
}
else
{
return left;
}
}
}
else if (a[midi] < a[left])
{
if (a[midi] > a[right])
{
return midi;
}
else if(a[midi] < a[right])
{
if (a[right] > a[left])
{
return left;
}
else
{
return right;
}
}
}
}
2. 递归到小的子区间时,可以考虑使用插入排序
此优化可使整体效率变得更高,因为省去了最后几层的递归,也就是省去了百分之七八十,使得运行效率更高。
if ((right - left + 1) < 10)
{
InsertSort(a + left, right - left + 1);
}
给定一个限制,使用插入排序即可。
2.3.3.5非递归快排
非递归快排的基本思路是使用数据结构中的栈来模拟实现递归。
//非递归快排
void QuickSortNonR(int* a, int left, int right)
{
Stack st;
StackInit(&st);
StackPush(&st, right); //
StackPush(&st, left);
while (!StackEmpty(&st))
{
int begin = StackTop(&st); //
StackPop(&st);
int end = StackTop(&st);
StackPop(&st);
int keyi = QuickSort2(a, begin, end);
//[ begin keyi-1] keyi [keyi+1 end]
if (keyi + 1 < end)
{
StackPush(&st, end);
StackPush(&st, keyi + 1);
}
if (begin < keyi - 1)
{
StackPush(&st, keyi - 1);
StackPush(&st, begin);
}
}
StackDestroy(&st);
}
代码中使用的是数据结构中的栈,如果不理解可以看下面这篇文章里面详细讲解了栈,希望能帮助到你。
CSDNhttps://mp.csdn.net/mp_blog/creation/editor/140141697快速排序的特性总结:
1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(logN)
4. 稳定性:不稳定
2.4归并排序
2.4.1归并排序基本思想
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
代码实现:
//归并排序
void _MergeSort(int* a, int* temp, int begin, int end)
{
if (begin >= end)
{
return;
}
int mid = (begin + end) / 2;
_MergeSort(a, temp, begin, mid);
_MergeSort(a, temp, mid + 1, end);
int begin1 = begin;
int end1 = mid;
int begin2 = mid+1;
int end2 = end;
int i = begin;
while (begin1<=end1&&begin2<=end2)
{
if (a[begin1] < a[begin2])
{
temp[i++] = a[begin1++];
}
else
{
temp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
temp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
temp[i++] = a[begin2++];
}
memcpy(a+begin, temp+begin, (end - begin + 1) * sizeof(int));
}
2.4.2非递归归并排序
void MergeSort(int* a, int n)
{
int* temp = (int*)malloc(sizeof(int) * n);
if (temp == NULL)
{
perror("malloc fail");
return;
}
//_MergeSort(a, temp, 0, n - 1);
int i = 0;
int gap = 1;
while (gap < n)
{
for (i = 0; i < n; i += 2*gap)
{
int begin1 = i;
int end1 = i+gap-1;
int begin2 = i+gap;
int end2 = i+2*gap-1;
int j = i;
if (begin2 > n)
{
break;
}
if (end2 > n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] < a[begin2])
{
temp[j++] = a[begin1++];
}
else
{
temp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
temp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
temp[j++] = a[begin2++];
}
memcpy(a + i, temp + i, (end2 - i + 1) * sizeof(int));
}
gap *= 2;
}
free(temp);
temp = NULL;
}
归并排序的特性总结:
1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(N)
4. 稳定性:稳定
2.5非比较排序
2.5.1基本思想
思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中
2.5.2计数排序
void CountSort(int* a, int n)//计数排序
{
int max = a[0];
int min = a[0];
for (int i = 0; i < n; i++)
{
if (a[i] > max)
{
max = a[i];
}
if (a[i] < min)
{
min = a[i];
}
}
int range = max - min + 1;
int* count = (int*)calloc(range,sizeof(int));
if (count == NULL)
{
perror("calloc fail");
return;
}
for (int i = 0; i < n; i++)
{
count[a[i] - min]++;
}
int j = 0;
for (int i = 0; i < range; i++)
{
while(count[i]--)
{
a[j++] = i + min;
}
}
}
计数排序的特性总结:
1. 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
2. 时间复杂度:O(MAX(N,范围))
3. 空间复杂度:O(范围)
4. 稳定性:稳定
三.排序算法复杂度及稳定性分析