以FastGPT为例提升Rag知识库应用中的检索召回命中率

提升Rag知识库应用中的检索召回命中率

在构建Rag(Retrieval-Augmented Generation)知识库应用时,检索召回知识片段的命中率是至关重要的。高效、准确的检索机制是确保AI系统能够精准响应用户查询的基础。当前,FastGPT主要采用三种检索方式:语义检索(向量化检索)、全文检索,以及结合两者的混合检索。每种方式均可搭配重排模型以优化结果排序。

检索方式评估

  • 全文检索:虽适用于关键词检索,但在对话场景下,直接将用户问题作为关键词进行检索,效果欠佳,因对话的复杂性和语境敏感性难以通过简单关键词捕捉。
  • 混合检索:旨在结合语义检索与全文检索的优势,但受限于知识库最大引用tokens,其效果并未如预期般显著提升。实际测试中,混合检索的结果排序往往不如单独使用语义检索时精确,且对检索效率的提升有限。
  • 语义检索:经过反复测试,语义检索因其能够捕捉更丰富的语义信息,被证明在对话应用中表现最佳。其通过向量化技术,将用户查询与知识库中的内容进行深度语义匹配,从而有效提升了召回命中率。

重排模型的考量

重排模

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泰山AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值