# HashMap 扩容resize方法以及哈希碰撞

final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
//原始table容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//原始table阈值
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//若原始table容量超过最大容量，将阈值设为2^31-1，并不再扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//容量扩一倍仍小于最大容量，新阈值阔一倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//原始容量为0，但阈值不为0（hashMap初始化）
else if (oldThr > 0) // initial capacity was placed in threshold
//容量置为阈值
newCap = oldThr;
//容量与阈值都为0的情况
else {               // zero initial threshold signifies using defaults
//设为默认的容量与阈值
newCap = DEFAULT_INITIAL_CAPACITY;
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
//若该节点没有子节点，直接放入新table中
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
//若为树节点，则对树的hash重新分配
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//链表结构
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
}
if (hiTail != null) {
hiTail.next = null;
}
}
}
}
}
return newTab;
}

在构造函数中并没有初始化table，而是在添加第一个数据的时候在扩容方法中初始化table。

static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

tab[i = (n - 1) & hash]；

"<<" 左移：右边空出的位上补0，左边的位将从字头挤掉，左移一位其值相当于乘2。

">>"右移：右边的位被挤掉，右移一位其值相当于除以2

">>>"无符号右移，右边的位被挤掉，对于左边移出的空位一概补上0。

这就完美的证明了前面给出的结论：

当 lenth = 2^n 时，X % length = X & (length - 1)

注意，一定要是2^n次方，才满足上面的公式，否则就是错误的。

01-04 2万+

03-22 407
05-21 240
03-31 1018
12-04 2216
04-02 391
02-22 3761
11-25 459
08-20 490
09-21 538
03-09 94
01-19 646