HashMap 扩容resize方法以及哈希碰撞

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        //原始table容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //原始table阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //若原始table容量超过最大容量,将阈值设为2^31-1,并不再扩容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //容量扩一倍仍小于最大容量,新阈值阔一倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //原始容量为0,但阈值不为0(hashMap初始化)
        else if (oldThr > 0) // initial capacity was placed in threshold
            //容量置为阈值
            newCap = oldThr;
        //容量与阈值都为0的情况
        else {               // zero initial threshold signifies using defaults
            //设为默认的容量与阈值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        //若该节点没有子节点,直接放入新table中
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        //若为树节点,则对树的hash重新分配
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //链表结构
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

 在构造函数中并没有初始化table,而是在添加第一个数据的时候在扩容方法中初始化table。

碰撞:所谓“碰撞”就上面所述是多个元素计算得出相同的hashCode,在put时出现冲突。 

static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

 

tab[i = (n - 1) & hash];

第一步:取 hashCode 值: key.hashCode()

第二步:高位参与运算:h>>>16

第三步:取模运算:(n-1) & hash

为了使元素分布均匀避免发生碰撞,都是用的取模运算,用一个值去模上总长度,即 n%hash。我们知道在计算机中 & 的效率比 % 高很多,那么如何将 % 转换为 & 运算呢?在HashMap 中,是用的 (n - 1) & hash 进行运算的。

即要证明

当 lenth = 2^n 时,X % length = X & (length - 1)

也就是说,长度为2的n次幂时,模运算 % 可以变换为按位与 & 运算。

首先

"<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,左移一位其值相当于乘2。

">>"右移:右边的位被挤掉,右移一位其值相当于除以2

">>>"无符号右移,右边的位被挤掉,对于左边移出的空位一概补上0。

一个十进制数对一个2^n 的数取余,我们可以将这个十进制转换为二进制数,将这个二进制数右移n位,移掉的这 n 位数即是余数。

根据与运算符&的规律,当位上都是 1 时,结果才是 1,否则为 0。所以任意一个二进制数对 2^k取余时,我们可以将这个二进制数与(2^k-1)进行按位与运算,保留的即使余数。

  这就完美的证明了前面给出的结论:

  当 lenth = 2^n 时,X % length = X & (length - 1)

  注意,一定要是2^n次方,才满足上面的公式,否则就是错误的。

所以HashMap的初始容量为啥是 1<<4 ,而且每次扩容都是扩大一倍。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页