数据结构-递归

在这里插入图片描述

package com.chb.digui;

public class test {
	public static void main(String[] args) {
		test1(4);
		int sum=f(5);
		System.out.println(sum);
	}
	public static void test1(int n) {
		if(n>2) {
			test1(n-1);
		}
		System.out.println("n="+n);
	}
	public static int f(int n) {
		if(n==1) {
			return 1;
		}else {
			return n*f(n-1);
		}
	}
}

运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

package com.chb.digui;

public class MiGong {
	public static void main(String[] args) {
		// 创建一个二维数组表示迷宫
		int[][] map = new int[8][7];
		// 使用1表示墙
		// 上下设置为1
		for (int i = 0; i < 7; i++) {
			map[0][i] = 1;
			map[7][i] = 1;
		}
		// 左右设置为1
		for (int i = 0; i < 8; i++) {
			map[i][0] = 1;
			map[i][6] = 1;
		}

		// 设置挡板
		map[3][1] = 1;
		map[3][2] = 1;

		// 遍历二维数组
		for (int[] is : map) {
			for (int is2 : is) {
				System.out.print(is2 + " ");
			}
			System.out.println();
		}
		// 使用递归给小球找路
		setWay2(map, 1, 1);
		// 输出新的地图, 小球走过,并标识过的递归
		System.out.println("小球走过,并标识过的 地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
	}

	// 使用递归回溯来给小球找路,找从i到j的路
	// 说明
	// 1. map 表示地图
	// 2. i,j 表示从地图的哪个位置开始出发 (1,1)
	// 3. 如果小球能到 map[6][5] 位置,则说明通路找到.
	// 4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
	// 5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
	public static boolean setWay(int map[][], int i, int j) {
		if (map[6][5] == 2) {
			return true;// 通路已经找到ok
		} else {
			if (map[i][j] == 0) {// 如果当前这个点还没有走过
				map[i][j] = 2; // 假定该点是可以走通.
				if (setWay(map, i + 1, j)) {// 向下走
					return true;
				} else if (setWay(map, i, j + 1)) { // 向右走
					return true;
				} else if (setWay(map, i - 1, j)) { // 向上走
					return true;
				} else if (setWay(map, i, j - 1)) { // 向左走
					return true;
				} else {
					// 说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else {// 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}

	// 修改找路的策略,改成 上->右->下->左
	public static boolean setWay2(int[][] map, int i, int j) {
		if (map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if (map[i][j] == 0) { // 如果当前这个点还没有走过
				// 按照策略 上->右->下->左
				map[i][j] = 2; // 假定该点是可以走通.
				if (setWay2(map, i - 1, j)) {// 向上走
					return true;
				} else if (setWay2(map, i, j + 1)) { // 向右走
					return true;
				} else if (setWay2(map, i + 1, j)) { // 向下
					return true;
				} else if (setWay2(map, i, j - 1)) { // 向左走
					return true;
				} else {
					// 说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}
}

运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

package com.chb.digui;

public class Queue {
	// 定义一个max表示共有多少个皇后
	int max = 8;
	// 定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
	int[] array = new int[max];
	 static int count = 0;
	 static int judgeCount = 0;

	public static void main(String[] args) {
		Queue queue=new Queue();
		queue.check(0);
		System.out.printf("一共有%d解法", count);
		System.out.printf("一共判断冲突的次数%d次", judgeCount);
	}
	
	//编写一个方法,放置第n个皇后
	private void check(int n) {
		if(n == max) {  //n = 8 , 其实8个皇后就既然放好
			print();
			return;
		}
		//依次放入皇后,并判断是否冲突
		for(int i = 0; i < max; i++) {
			//先把当前这个皇后 n , 放到该行的第1列
			array[n] = i;
			//判断当放置第n个皇后到i列时,是否冲突
			if(judge(n)) { // 不冲突
				//接着放n+1个皇后,即开始递归
				check(n+1); //  
			}
			//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
		}
	}
	
	//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
	private boolean judge(int n) {
		judgeCount++;
		for (int i = 0; i <n; i++) {
			//1. array[i] == array[n]  表示判断 第n个皇后是否和前面的n-1个皇后在同一列
			//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
			//3. 判断是否在同一行, 没有必要,n 每次都在递增
			if(array[i]==array[n]||Math.abs(n-i) == Math.abs(array[n] - array[i])) {
				return false;
			}
		}
		return true;
	}

	// 写一个方法,可以将皇后摆放的位置输出
	private void print() {
		 count++;
		for (int i = 0; i < array.length; i++) {
			System.out.print(array[i] + " ");
		}
		System.out.println();
	}
}

运算结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值