package com.chb.digui;
public class test {
public static void main(String[] args) {
test1(4);
int sum=f(5);
System.out.println(sum);
}
public static void test1(int n) {
if(n>2) {
test1(n-1);
}
System.out.println("n="+n);
}
public static int f(int n) {
if(n==1) {
return 1;
}else {
return n*f(n-1);
}
}
}
运行结果:
package com.chb.digui;
public class MiGong {
public static void main(String[] args) {
// 创建一个二维数组表示迷宫
int[][] map = new int[8][7];
// 使用1表示墙
// 上下设置为1
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
// 左右设置为1
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
// 设置挡板
map[3][1] = 1;
map[3][2] = 1;
// 遍历二维数组
for (int[] is : map) {
for (int is2 : is) {
System.out.print(is2 + " ");
}
System.out.println();
}
// 使用递归给小球找路
setWay2(map, 1, 1);
// 输出新的地图, 小球走过,并标识过的递归
System.out.println("小球走过,并标识过的 地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
// 使用递归回溯来给小球找路,找从i到j的路
// 说明
// 1. map 表示地图
// 2. i,j 表示从地图的哪个位置开始出发 (1,1)
// 3. 如果小球能到 map[6][5] 位置,则说明通路找到.
// 4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
// 5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
public static boolean setWay(int map[][], int i, int j) {
if (map[6][5] == 2) {
return true;// 通路已经找到ok
} else {
if (map[i][j] == 0) {// 如果当前这个点还没有走过
map[i][j] = 2; // 假定该点是可以走通.
if (setWay(map, i + 1, j)) {// 向下走
return true;
} else if (setWay(map, i, j + 1)) { // 向右走
return true;
} else if (setWay(map, i - 1, j)) { // 向上走
return true;
} else if (setWay(map, i, j - 1)) { // 向左走
return true;
} else {
// 说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else {// 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
// 修改找路的策略,改成 上->右->下->左
public static boolean setWay2(int[][] map, int i, int j) {
if (map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if (map[i][j] == 0) { // 如果当前这个点还没有走过
// 按照策略 上->右->下->左
map[i][j] = 2; // 假定该点是可以走通.
if (setWay2(map, i - 1, j)) {// 向上走
return true;
} else if (setWay2(map, i, j + 1)) { // 向右走
return true;
} else if (setWay2(map, i + 1, j)) { // 向下
return true;
} else if (setWay2(map, i, j - 1)) { // 向左走
return true;
} else {
// 说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
}
运行结果:
package com.chb.digui;
public class Queue {
// 定义一个max表示共有多少个皇后
int max = 8;
// 定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;
public static void main(String[] args) {
Queue queue=new Queue();
queue.check(0);
System.out.printf("一共有%d解法", count);
System.out.printf("一共判断冲突的次数%d次", judgeCount);
}
//编写一个方法,放置第n个皇后
private void check(int n) {
if(n == max) { //n = 8 , 其实8个皇后就既然放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for(int i = 0; i < max; i++) {
//先把当前这个皇后 n , 放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if(judge(n)) { // 不冲突
//接着放n+1个皇后,即开始递归
check(n+1); //
}
//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
}
}
//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
private boolean judge(int n) {
judgeCount++;
for (int i = 0; i <n; i++) {
//1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
//3. 判断是否在同一行, 没有必要,n 每次都在递增
if(array[i]==array[n]||Math.abs(n-i) == Math.abs(array[n] - array[i])) {
return false;
}
}
return true;
}
// 写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
运算结果: