第十三周项目4-Floyd算法验证

问题:

[cpp]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. /*  
  2. * Copyright (c)2016,烟台大学计算机与控制工程学院  
  3. * All rights reserved.  
  4. * 文件名称:项目4.cbp  
  5. * 作    者:陈晓琳  
  6. * 完成日期:2016年11月24日  
  7. * 版 本 号:v1.0  
  8.   
  9. * 问题描述:Floyd算法的验证  
  10.   
  11. * 输入描述:无  
  12. * 程序输出:测试数据  
  13. */    

头文件及功能函数见【图算法库】

测试用图:


代码:

[cpp]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. #include "graph.h"    
  2. #define MaxSize 100    
  3.     
  4. void Ppath(int path[][MAXV],int i,int j)  //前向递归查找路径上的顶点    
  5. {    
  6.     int k;    
  7.     k=path[i][j];    
  8.     if (k==-1) return;  //找到了起点则返回    
  9.     Ppath(path,i,k);    //找顶点i的前一个顶点k    
  10.     printf("%d,",k);    
  11.     Ppath(path,k,j);    //找顶点k的前一个顶点j    
  12. }    
  13. void Dispath(int A[][MAXV],int path[][MAXV],int n)    
  14. {    
  15.     int i,j;    
  16.     for (i=0; i<n; i++)    
  17.         for (j=0; j<n; j++)    
  18.         {    
  19.             if (A[i][j]==INF)    
  20.             {    
  21.                 if (i!=j)    
  22.                     printf("从%d到%d没有路径\n",i,j);    
  23.             }    
  24.             else    
  25.             {    
  26.                 printf("  从%d到%d=>路径长度:%d 路径:",i,j,A[i][j]);    
  27.                 printf("%d,",i);    //输出路径上的起点    
  28.                 Ppath(path,i,j);    //输出路径上的中间点    
  29.                 printf("%d\n",j);   //输出路径上的终点    
  30.             }    
  31.         }    
  32. }    
  33. void Floyd(MGraph g)    
  34. {    
  35.     int A[MAXV][MAXV],path[MAXV][MAXV];    
  36.     int i,j,k;    
  37.     for (i=0; i<g.n; i++)    
  38.         for (j=0; j<g.n; j++)    
  39.         {    
  40.             A[i][j]=g.edges[i][j];    
  41.             path[i][j]=-1;    
  42.         }    
  43.     for (k=0; k<g.n; k++)    
  44.     {    
  45.         for (i=0; i<g.n; i++)    
  46.             for (j=0; j<g.n; j++)    
  47.                 if (A[i][j]>A[i][k]+A[k][j])    
  48.                 {    
  49.                     A[i][j]=A[i][k]+A[k][j];    
  50.                     path[i][j]=k;    
  51.                 }    
  52.     }    
  53.     Dispath(A,path,g.n);   //输出最短路径    
  54. }    
  55. int main()    
  56. {    
  57.     MGraph g;    
  58.     int A[4][4]=    
  59.     {    
  60.         {0,  15,INF,INF},    
  61.         {10,  0,INF,  6},    
  62.         {INF, 8,  0,  2},    
  63.         {3,  INF, 2,  0}    
  64.     };    
  65.     ArrayToMat(A[0], 4, g);    
  66.     Floyd(g);    
  67.     return 0;    
  68. }    

运行结果:


知识点总结:

Floyd算法的验证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值