Nature Reviews Neuroscience:人类丘脑核标准化神经影像方法路线图

丘脑在调节皮质与皮质下结构之间的相互作用中起着关键作用,但在神经影像学研究中常被忽视,这些研究大多关注皮质结构和活动的变化。丘脑被忽视的主要原因之一是通过神经影像学对单个丘脑核进行划分仍存在争议。实际上,不同的神经影像图谱在包含哪些丘脑核及其划分方法上存在显著差异。在本文中,我们回顾了当前和新兴的丘脑核在神经影像数据中的分割方法,并考虑了现有技术在研究和临床适用性方面的局限性。我们通过提出一个改进人类神经影像中丘脑核分割的路线图,进而统一研究方法并推动临床应用,来应对这些挑战。我们认为,实现这一目标需要集体的努力。我们希望最终能够将丘脑核视为关键的脑区,而不仅仅(作为皮质与皮质下区域之间的一个通道。本文发表在Nature Reviews Neuroscience杂志。

引言

     丘脑在皮质与皮质下脑区之间的相互作用中发挥着关键作用,这些相互作用支撑了一系列脑功能,包括运动、感觉、认知、行为和情感功能。丘脑由多个核团组成,这些核团在连接性、功能性和专业化方面具有独特的特征,与其他皮质和皮质下脑区相比,它们在健康与疾病中都具有重要意义。

     许多近期的神经科学研究投入了大量精力评估人脑区域,旨在揭示其细分区域的不同角色。这不仅适用于丘脑,还包括基底神经节、小脑以及之前被认为是功能单元的几个皮质区域,这些区域现在被视为复合结构,以下将进行讨论。

      然而,分割概念对于丘脑尤其重要,原因与其解剖结构和功能相关。首先,主要丘脑核的一个关键特征是它们之间没有直接连接(除了通过丘脑网状核介导的间接连接外)而是与特定的投射区域紧密连接。这种连接模式不同于基底神经节,它们自身形成一个回路并具有共同的神经化学特性。也不同于小脑,后者的核团和皮质在功能上排列以协调复杂操作。丘脑核的连接性表明,它们承担多种功能,而不是作为一个承载相同功能的互连核团集群,这意味着明确划分丘脑核将有助于我们区分这些功能。

     丘脑的第二个独特特征是其爆发和中继放电模式,这些模式由于其与皮质的独特连接,使丘脑能够在整个皮质网络之间快速切换功能活动。这一特征通过谷氨酸能丘脑皮质突触的显著突触权重得以增强,丘脑可以通过这些突触驱动皮质神经元(与大多数其他皮质下传入不同,后者通常使用神经调节剂)。因此,丘脑核调节皮质活动的机制是这些区域一个重要且可能是独特的特征。

     最后,与其他脑区的核团相比,丘脑核高度专业化:仅外膝状核就由六个子区组成,而高阶丘脑核(如内背核和枕核)在其不同部分展示了多种细胞结构。

    这些丘脑的独特特征解释了为什么丘脑难以研究,为什么丘脑研究需要相当的细粒度,以及为什么丘脑在临床上如此重要。然而,丘脑核的划分仍存在争议。人类大脑中通过组织学定义了大约40个丘脑核,但当前的丘脑分割方法仅能在神经影像中可靠地划分其中的一部分(见框1)。这限制了我们对丘脑及其在健康与疾病中的功能的理解,使得跨研究(无论是在人群之间还是在人类与动物模型之间)的结果比较变得具有挑战性。目前,关于哪些丘脑核可以被可靠地成像,或如何利用新兴技术在人体中更稳健地划分丘脑核,该领域尚无共识。

    为了解决和克服基于神经影像的人类丘脑核划分和分割的不足,我们组建了一个联盟,即丘脑核神经影像小组(TANGO)。在此,我们简要回顾了通过神经影像分割人类丘脑核的当前挑战和机遇,并说明了现有丘脑核神经影像方法如何限制了研究和临床应用。最后,我们提出了一个丘脑核成像的未来路线图,旨在促进我们对这一重要脑结构作用的理解的进步。

框1 丘脑核划分的组织学方法

     尸检后的组织学方法被认为是评估丘脑内解剖边界的“金标准”。使用显微镜可以达到的空间分辨率远高于目前可用的MRI方法。然而,基于组织学的图谱可以通过多种不同方式帮助在MRI数据中划分脑结构。

     基于组织学的人脑图谱可以作为参考,提供各个结构相对位置和大小的一般信息,这可以指导对MRI数据的手动划分。然而,这种劳动密集型方法的成功高度依赖于丘脑核在MRI图像中的可见性,而这种可见性通常有限。解决这一问题的一种方法是将详细的基于组织学的信息配准到MRI空间。图中展示了这种配准的一个例子,其中第一行显示了在7 T场强下以0.4 mm各向同性分辨率获取的单个尸检标本的定量MRI图像,具有不同的对比度(纵向弛豫(R1)、横向弛豫(R2*)和质子密度)。丘脑核在图的中间一行中更加清晰可见,展示了尸检组织的不同组织学染色。最后一行显示了同一标本使用针对帕维尔氏蛋白、钙雷汀或钙结合蛋白的抗体进行的免疫组织化学染色。然而,将基于组织学的信息与MRI数据共配准并随后验证其下的解剖结构仍然具有挑战性。另一种方法是对MRI空间中可用的其他图谱进行比较。有趣的是,一些共配准工作甚至结合了概率信息,其中使用统计方法来估计特定图像对齐的可能性。概率方法不是确定单一的“最佳”对齐,而是考虑多种可能的对齐方式,并根据图像特征和相似性指标为每种对齐方式分配概率。这允许更稳健和准确的共配准,特别是在处理噪声大或模糊的图像数据时。通过将不确定性纳入对齐过程,概率方法可以帮助避免错误并提高配准图像的整体质量。

     尽管将组织学信息与MRI数据结合具有优势,但评估丘脑核形状和体积的个体间变异程度仍然困难。理解这些变异对于分类“正常脑解剖”、疾病检测和手术规划至关重要。为了解决组织学方法与体内方法之间转化的挑战,已经开发了几种方法来从相同的标本中收集MRI数据和组织学信息。通过这些努力创建的数据集可以作为验证现有共配准图谱以及未来丘脑映射工作的基础。

图片

人类丘脑核的神经影像学

      通过获取和分割MRI数据来划分人类丘脑核的方法在过去几十年中取得了不同程度的成功。在3 T或7 T场强下获取的数据中,不同丘脑核的弛豫时间和/或质子密度非常相似(图1a)。即使在如9.4 T的非常高场强下,丘脑核的划分仍然具有挑战性,这使得通过常规的T1加权(T1w)成像和T2*加权成像来区分它们变得困难。另一种方法使用特定的采集序列,如白质零化(WMn)成像,以改善丘脑核的划分。白质零化通过去除围绕丘脑核以及丘脑外的白质层的信号,改善了丘脑内部的对比度以及整体丘脑的对比度,从而更好地划分了丘脑核及丘脑的侧边界。即使在3 T和7 T下,WMn采集也能更好地划分丘脑核(图1b),但空间分辨率的限制仍然使得成像体素容易受到部分体积效应和相关模糊的影响。因此,丘脑核在MRI数据中的划分可能会产生低准确性——尤其是对于较小的丘脑核——从而妨碍了人类丘脑神经影像学发现的可靠性。

图片

图1:不同场强和MRI脉冲序列下丘脑核的可视化,突出当前分割挑战

     a,采用3 T和7 T场强获取的白质零化信号的磁化准备快速梯度回波(MPRAGE)图像。当白质信号被零化时,如图中的插图所示,几个核团的划分变得更容易。与同一序列在3 T下的数据相比,7 T下的分辨率提升看起来有限,但在此场强下的采集时间大大缩短,从而最小化运动伪影,同时信噪比提高。

     b,使用三种不同的MPRAGE采集序列在3 T下以1 mm³分辨率获取的丘脑图像:标准MPRAGE(左),灰质零化(中)和白质零化(右)。标准MPRAGE 3 T图像的对比度较差,因为丘脑核内的组织具有相似的弛豫时间,导致核团之间甚至核团与围绕丘脑的白质组织之间的边界难以区分。灰质零化的序列显示了丘脑核的稍好划分,但核团之间的边界定义仍然具有挑战性。然而,白质零化的序列清晰地划分了丘脑与周围白质(由白色箭头指示)以及丘脑核团之间的边界(高放大插图中的白色箭头头)。此外,外膝状核的划分也更为清晰(白色虚线)。

      尽管存在这些限制,MRI仍然是成像人类丘脑核体内非侵入性方法的首选。近期在采集方法(框2和表1)和分割技术方面的发展显示出弥合体内MRI数据与尸检和/或组织学研究数据之间对比度和分辨率差距的潜力,后者仍然是金标准。以下部分简要概述了当前和新兴的人类丘脑核在MRI数据中分割的方法,并讨论了它们的挑战和机遇。

表1 获取方法学和丘脑核分割处理软件的摘要

图片

BOLD,血氧水平依赖;EPI,回声平面成像;HIPS,基于直方图的多项式合成;Lead-DBS,深脑刺激导线 – 一种基于术后MRI和CT成像,促进深脑刺激电极重建和计算机模拟的工具箱;MPRAGE,磁化准备快速梯度回波成像;MP2RAGE,磁化准备2快速采集梯度回波;ODF,方向分布函数;THOMAS,丘脑优化的多图谱分割。

框2 丘脑核的采集方法

      通过MRI对丘脑核进行分割的效果受所选择的采集序列影响(即,为生成图像而应用的一组射频脉冲和磁场梯度)。不同的序列强调不同的组织特性,仔细选择序列可以显著影响丘脑核的可见性和划分。MRI可以分为三大类:解剖和/或结构MRI、扩散MRI(dMRI)以及功能成像。解剖成像通常包括T1加权(T1w)成像、T2加权成像和磁敏感加权成像。扩散MRI测量水分子的平均扩散,这间接探测生物组织的结构,其尺度远小于常规MRI的分辨率(通常为2–3毫米)。功能性MRI(fMRI)测量由脱氧血红蛋白产生的信号变化(所谓的血氧水平依赖效应)并可用于认知和/或行为任务或作为静息态fMRI。

     T1弛豫时间对髓鞘含量的敏感性以及不同丘脑核之间髓鞘含量的差异已被利用,通过T1w-MRI实现丘脑核的分割(引文43)。基于扩散的方法,通过探查扩散张量的各向异性行为,在局部尺度上探索微观结构,或通过使用纤维追踪评估不同皮质区域与丘脑之间的结构连接,也被用于丘脑核的分割或(更粗略但更可靠地)聚类丘脑核的细分。同样,基于皮质连接的分区也已使用静息态fMRI数据进行。尽管T1w-MRI能够确定核团的髓鞘含量并具有高空间分辨率(各向同性1毫米),但该方法在划分丘脑内部和内囊边界方面通常效果不佳。dMRI和fMRI均使用回波平面成像序列获取,该序列在空间分辨率上有限且易受畸变影响(特别是在磁敏感性增加的区域,如颞叶和邻近窦腔的区域)。

      MRI扫描仪的场强也会显著影响丘脑核的采集和后续分割方法。大多数研究和临床MRI扫描仪的场强为1.5 T或3 T,7 T MRI扫描仪仅在高度专业化的研究中心中可见。7 T MRI能够提供显著更高的信噪比(约为3 T MRI的两倍),但这以组织加热增加(比3 T MRI的特定吸收率高四倍)和介电伪影增加为代价,后者导致不均匀性增加。此外,7 T MRI在空气-组织界面处对主磁场B0的变化更为敏感,导致图像伪影和更高的信号丢失。这些伪影在组织产生的小磁场与B0相互作用时产生,并导致后者的波动。磁场越高,组织引起这种波动的敏感性越大。然而,7 T MRI已被用于许多特定应用,包括磁敏感加权成像和定量磁敏感成像,其增加的敏感性可以被利用。这些应用基于手动划分(如识别用于深部脑刺激的运动丘脑核)增强了丘脑核的分割。7 T MRI相较于3 T MRI的另一个优势是它允许在并行成像中使用更高的加速因子(衡量扫描速度相较于常规扫描的提升程度的指标)(并行成像是一种通过在接收线圈阵列中使用较少的数据点来加速MRI扫描的成像技术),尽管这伴随着更高的几何(g)因子(衡量与并行成像相关的图像质量损失的指标)。因此,结合其更高的信噪比,7 T MRI能够在与3 T MRI相当的扫描时间内显著减少扫描时间或改善空间分辨率(各向同性0.8毫米或更好)。为克服阴影伪影(由于图像采集过程中射频场的不均匀性导致的图像上出现的暗影),引入了一种使用两个反转准备段的磁化准备快速梯度回波(MPRAGE)变体(磁化准备2快速采集梯度回波;MP2RAGE)在这种方法中,最终的T1w图像是比率图像,从而消除了阴影伪影。同一采集序列也可用于生成T1图,从中可以合成更新的对比度,如白质零化的MPRAGE。最后,诸如白质零化的MPRAGE等T1w-MRI的变体已被证明在7 T下提供了最佳的丘脑内部对比度,并清晰划分了丘脑的侧边界。

基于结构MRI的分割

     当前可用的结构MRI的丘脑分割方法大致可以分为三类:基于将结构MRI数据与组织学图谱共配准的方法(见框1),涉及对结构MRI数据进行直接标记的方法,以及将组织学与结构MRI数据相结合的方法。

     迄今为止,大多数基于组织学的MRI丘脑分割都是使用Morel立体定向人类丘脑图谱(图2)和Schaltenbrand图谱创建的。这两种图谱被广泛使用,但它们与特定个体丘脑的空间对应关系的准确性在很大程度上取决于通过图像配准过程(将图谱非线性地变形以匹配特定个体解剖结构的复杂数学操作)来匹配其解剖结构的准确性。对于结构MRI、扩散MRI和功能MRI(fMRI),不同个体的丘脑核分割可能显示出显著的变异性(图2)。这意味着不同模态下的概率图(当一个体素超过给定统计阈值时,该体素被索引为属于特定区域,从而捕捉到丘脑核边界的个体间变异性)通常仅能大致估计核团的位置和大小,尤其是较小的核团可能更不准确(图2)。

图片

图2:不同个体和成像方法下丘脑分区形状和体积的变异性。该图展示了通过不同个体和使用不同MRI数据采集及分割技术观察到的丘脑核形状和体积的变异性。

     a,两位个体在结构MRI、扩散MRI或功能MRI(fMRI)数据中丘脑核分割的相似性和差异性。结构MRI数据使用丘脑优化的多图谱分割方法进行分割,扩散MRI数据使用方向分布函数方法进行分割,fMRI数据则通过瞬时连接性的时间过程进行功能分区。

    b,还展示了Morel基于组织学图谱的一个切片的示意图以供比较。

    c,考虑到不同个体丘脑核形状和体积的概率图。最大概率指的是该体素内索引核团存在的最高可能性。这些图也反映了基于所使用的图像采集和分割方法输出的分区高度变异性。

    AM,前内侧核;CeM,中央内侧核;CM,中央中核;Hb,缰核;Md,背内侧核;MDpc,背内侧核小细胞部;MDpl,背内侧板旁部;PuA,前枕核;Pul,下枕核;PuM,内侧枕核;R,网状核;VA,腹前核;VL,腹外侧核;VLa,腹外侧前核;VLp,腹外侧后核;VPLa,腹后外侧核前部;VPLp,腹后外侧核后部。

      利用这些组织学图谱对丘脑核进行体积量化已为许多研究做出了贡献,例如分析健康对照中涉及认知任务的大脑枢纽,或丘脑核在大规模功能或核特定网络中的参与。这种方法的流行与这些图谱被嵌入到常用的神经影像分析流程中有关。然而,尽管这些丘脑图谱对大量用户群体具有高度可访问性,但它们并不总是适合特定扫描人群或研究的核团,且配准质量(即源数据与目标数据之间的拟合优度以及配准失败的具体区域)也不总是被报告。例如,尽管当前的配准算法在年轻健康大脑中表现出可接受的性能,但当应用于受年龄相关过程、病理生理或手术干预影响的大脑时,这些方法的准确性会下降,限制了其泛化能力。此外,组织学图谱通常是从单一标本(或极少数标本)创建的,可能无法捕捉丘脑形状和体积的个体间变异性。最后,用于组织学分析的组织样本存在显著的变形,需要通过共配准进行校正。当从组织学数据的高分辨率(微米级)转移到较低分辨率的MRI空间(通常为1毫米各向同性)时,这些挑战的影响进一步加剧。除了这些问题,自1970年代以来,用于这些组织学图谱的人类丘脑命名法也经历了演变。这一演变可归因于多个因素,包括获取更大数据集(从而减少个体间变异性)以及显微成像、宏观成像和共配准算法的技术进步。然而,跨时间使用的不一致术语妨碍了两种模态之间的准确映射,因为不同研究和图谱中的命名规范差异可能导致丘脑核定位的错位和识别错误,最终使得建立可靠和可比的数据分析变得困难。因此,尽管基于组织学的图谱被视为丘脑神经影像学的金标准,但它们仍无法轻松泛化到MRI空间。

      另一种分割方法涉及通过评估多个基于体素的图像特征直接标记结构MRI数据例如,(1)数值相似且倾向于彼此接近的体素强度可以被分组,(2)定义潜在边界的体素强度梯度,或(3)在结构之间对比度明显的解剖标志这种方法对个体间解剖变异更具弹性。此类基于MRI的分割技术似乎为个体解剖提供了比仅由组织学图谱驱动的分割更高的特异性。然而,潜在的问题——传统结构MRI在丘脑内对比度有限——削弱了这一论点。具体而言,使用标准T1加权成像序列获得的数据中,不同丘脑核的弛豫时间均匀性阻碍了结构MRI数据分割方法提供可靠的核团划分。此外,T1w-MRI序列的有限空间分辨率限制了体内可分割的核团数量,即使对于更高分辨率的MRI方法也是如此。因此,理论上,结构MRI丘脑分割方法可能提供更好的分割,但在实践中,它们常常受到结构MRI数据不准确性的限制。

     克服这两种方法相关问题的解决方案是将它们结合起来。多模态方法通过使用来自单一或多个预定义图谱(无论是基于组织学的还是基于手动定义标签的)的先验信息来指导结构MRI标记过程。由此产生的概率图谱允许形状和体积的变异性。例如,贝叶斯推断技术被用来将一个内部开发的尸检后丘脑图谱的基于网格的表征叠加到体内MRI数据上。由于其在FreeSurfer软件套件中的实现,这种方法自问世以来得到了广泛应用。另一种结合方法,多图谱标签融合,利用个体间的解剖变异性来改善个体内的丘脑分割,并已在丘脑优化的多图谱分割(THOMAS)图谱中实现。然而,标准T1w序列固有的对比度和分辨率问题仍然限制了这些方法识别的分割核团数量,与通过组织学识别的相比。为改善核团边界的划分,已提出应使用对比度优化的图像,如通过白质零化信号或定量T1映射提供的图像。定量参数图的获取允许生成多个内在对齐的MRI对比图像(即,当所有图像都从相同的原始数据重建时,它们在每个体素上本质上都是对齐的),并且可以提供额外的对比级别,因为不同组织之间信号强度差异的程度增加,以揭示丘脑内部结构的更多细节。例如,T1w图可以用于生成常规和WMn(白质零化成像)数据,提供两种完美配准的图像对比,因为它们是从单一参数图生成的。组织学制片可以提供更高水平的解剖细节,允许可视化在MRI上无法辨认的单个丘脑结构。将这些制片与其来自同一个体的结构MRI数据共同配准,可以促进将组织学结果共同配准到MRI标准空间。

基于扩散的分割

     除了解剖标志和强度差异外,分割还可以通过扩散加权磁共振成像(DWI)实现。DWI 基于测量水分子的微观运动,这些运动受到大脑基础微观结构解剖的限制。通过这些测量,可以基于丘脑核的微观结构特性或其与皮质投射的结构连接性来分割丘脑核。

      基于 DWI 的丘脑核分割主要涉及无监督的数据驱动技术,这些技术基于局部扩散特性(在丘脑内)或通过纤维追踪的长距离连接来分组数据。因此,这些技术大致可以分为三类。第一类技术基于各个核团不同的局部扩散特性,如完整的扩散张量、主要扩散方向或扩散方向分布。第二类技术测量不同核团与大脑其余部分之间的全局基于扩散的连接性,因此基于结构连接性。这些技术可以是纤维追踪方法,估计每个核团到皮质的长距离投射,或超分辨率轨迹密度方法。最后,第三类技术使用混合方法,结合局部和全局扩散特性。

     尽管体内基于扩散的 MRI 分割允许对丘脑进行量身定制的个体特异性非侵入性分析,但由于研究人员主观选择核团或簇的数量,往往会产生不一致的核团映射。与其他 MRI 采集序列(如 T1 加权成像、T2 加权成像或基于磁敏感性的成像)不同,DWI 目前尚无法利用诸如 7 T 等超高场强下可实现的潜在信号增强。

     尽管 DWI 提供了对丘脑微观结构变化及丘脑核与皮质区域关系的见解,但其整体空间分辨率相对较低(通常为各向同性 2–3 毫米),且某些复杂的纤维交叉配置可能难以成像。因此,目前尚不清楚皮质-丘脑和丘脑-皮质投射在多大程度上形成了一致的束,足以被 DWI 捕捉,尤其是在皮质内。与上述解剖方法相比,DWI 也更容易受到诸如涡流和磁敏感性伪影等因素导致的图像畸变的影响。因此,通过 DWI 通常只能精确识别少数核团,通常是较大的核团(见图2),且这些技术目前仅提供粗略的解剖视图。未来,基于轨迹密度的技术,侧重于纤维密度估计而非方向性,可能会克服一些这些限制,因为它们可以达到核团识别的组织学水平。然而,这些技术需要高质量的数据,并依赖于更先进的采集方案,如多壳 DWI。最后,临床 DWI 数据的准确性仍需评估,特别是因为全局结构连接性分析受到脑损伤的限制,这可能会影响纤维追踪结果。

基于fMRI的分割

     最后一种主要的丘脑核划分方法是基于静息态功能性MRI(rs-fMRI),用于检查皮质区域与丘脑的功能关系,或通过对丘脑-皮质连接图进行独立成分分析(ICA)来分割丘脑的子区。这两种方法主要基于丘脑与皮质在静息态活动中的相关性来分割丘脑。

     在这些方法中的第一种,使用“赢家通吃”方法评估血氧水平依赖(BOLD)信号的时间上连贯的自发波动:每个丘脑体素根据其与特定皮质区域(也称为“种子”)的最强相关性进行标记,该相关性“胜过”其他可能的相关性。因此,可以将具有相似标签的体素分组,形成基于它们与不同皮质区域功能连接的丘脑体素空间分布图。然而,使用这种方法识别的功能性丘脑子区并不对应于组织学或概率性结构MRI图谱中识别的解剖丘脑子区(见图2)。这种差异引发了有趣的问题:在考虑丘脑的动态功能角色时,传统定义的解剖边界是否不那么相关?或者,推导功能性子区的方法是否捕捉到了丘脑组织结构之外的组织维度?这种方法的另一个主要缺点是,所评估的皮质区域通常基于其细胞结构和/或结构解剖定义,这可能与大脑的功能域不对应。为了解决这一限制,一些方法改为描绘每个丘脑体素与静息态功能网络之间的最高相关性。因此,目前尚不清楚组织学定义的模板是否反映了皮质-丘脑连接的功能特性,因为大多数丘脑核表现出密集的内部连接,可能被划分为更独特的功能区域或更小的子域。

     基于ICA的方法侧重于识别丘脑内类似的BOLD信号模式,而不是与预定义的皮质区域的关联,提供了一种替代的丘脑分区方法。将基于区域或种子分析与ICA方法实现的功能性分割进行比较时,全脑分析导致的群体级丘脑子区是可比的。

     对fMRI基于分割与结构性定义的丘脑图谱之间空间重叠的定量评估显示,两种方法在功能性成像结果与尸检组织学之间存在显著差异(但参见参考文献68)。实际上,结构性和功能性丘脑-皮质连接图谱都存在相当大的差异,表明基础的大脑通信架构及其在静息态下的功能使用是复杂的,需要进一步研究。rs-fMRI丘脑分区方法也未考虑fMRI信号的动态性,后者在各个丘脑核之间表现出异质的时间特性,导致高度结构化的丘脑-皮质网络动态。可能需要超高场fMRI来识别这些时间动态,并提供足够的细粒度以捕捉单个丘脑核内及其之间的详细交互。最后,当前这些技术无法观察到每个特定丘脑核的变化。

新兴方法

     尽管迄今为止开发的大多数丘脑核分割方法使用单一的MRI采集技术(T1w、扩散MRI或rs-fMRI),但新兴方法利用多种MRI对比度,充分发挥每种MRI采集技术的互补优势。例如,已提出将DWI信息纳入基于T1w-MRI的分割中以更好地划分边界。同样,也有方法将T1w、T2加权和白质零化信号的磁化准备快速梯度回波(MPRAGE)数据纳入基于扩散的标量图(如基于平均扩散率、分数各向异性或纤维方向)的合成图像中,这些合成图像都经过重新采样(即,其空间分辨率或方向已被改变,以匹配不同图像类型的尺寸和坐标系统)并配准到T1w-MRI数据中。

     在数据驱动方法方面,基于深度学习的方法如今在任何领域都无处不在,包括MRI分割。第一种用于丘脑核分割的深度学习方法使用了一种称为残差U-net的神经网络,该网络使用手动分割的3 T和7 T白质零化信号的MPRAGE数据集进行训练。类似的网络使用联合获取的白质零化信号和标准MPRAGE数据进行训练,并用于7 T T1w数据的分割。另一种方法使用级联合成-分割方案,从标准T1w数据中合成白质零化信号的MPRAGE(从而提供更好的丘脑对比度)后再进行分割。最后,一种基于3D U-net架构的方法,使用T1、分数各向异性和Knutsson边缘图(后两者数据集是从扩散张量成像(DTI)数据计算得出)来分割丘脑核。然而,尽管这些基于深度学习的方法显示出前景,但仍面临挑战,包括训练所需的大规模数据集和/或注释,以及众所周知的对领域外案例(如使用不同场强、不同病理状态或扫描仪制造商使用的序列设置获得的数据)的泛化能力不足。这些是机器学习社区正在积极研究的领域。

     使用不同MRI采集序列获得的信息的组合可能会因T1w-MRI、DTI和rs-fMRI的空间分辨率差异巨大以及结构和功能边界之间的不一致而变得困难。然而,技术的进步,包括超高场成像和多波段回波平面成像,可能会在不久的将来使这些方法趋于一致。

分割挑战的影响

      使用MRI对丘脑核进行分割的困难目前限制了其临床和研究应用。事实上,上述许多分割方法主要是在健康的年轻成年人志愿者中开发的。当将这些方法应用于发展或老龄化队列或特定病理状况时,会面临额外的挑战。即使在健康老龄化过程中,丘脑及邻近区域也会发生显著的结构变化,这可能影响分割。此外,目前尚不清楚诸如因中风导致的丘脑梗塞(图3a)、神经退行性疾病(图3b)和酒精使用障碍(图3c)等丘脑病理变化如何影响其分割。在以下部分,我们将举例说明在丘脑核水平获取信息可能有用的情况,但当前方法学上的不足限制了可靠结果的获得。

图片

图3:健康老龄化和疾病中丘脑核的变化

     a,一系列左半球丘脑卒中的轴位 T1 加权磁化准备快速梯度回波 (MPRAGE) 扫描,这些卒中病灶影响背内侧核(红色圆圈表示病灶位置)。这些图像表明病灶位置在患者之间的变异性,并表明病灶也可能影响邻近的核团。

    b,阿尔茨海默病中的丘脑萎缩,如 T1 加权扫描所示。左侧图像显示健康老年人的丘脑,其中不同的核团被突出显示。右侧图像显示阿尔茨海默病患者的丘脑变化。请注意整体大脑萎缩以及特定丘脑核团的萎缩如何影响丘脑核团的描绘。

    c,对照组个体、酒精障碍个体和科尔萨科夫综合征个体的内侧丘脑变化。酒精障碍和科尔萨科夫综合征都会导致内侧丘脑体积的变化;然而,科尔萨科夫综合征的严重程度更大。这在健康对照组个体的丘脑 3D 渲染图中显示,红色覆盖层描绘了相应的体素簇,科尔萨科夫综合征组的体素簇体积明显小于酒精障碍组(基于体素的形态测量全因子分析(相当于 ANCOVA))。该图显示了对照组与酒精障碍组和科尔萨科夫综合征组的该体素簇中灰质体积的比较(通过计算红色簇内的平均灰质信号强度来测量,并进行 Tukey 事后比较)。*,相对于健康对照组显著;**,相对于酒精障碍组显著;均为 Tukey,P < 0.05。

     d,多发性硬化症中的丘脑变化,如 7T 白质零化 MPRAGE 扫描所示。顶行显示多发性硬化症个体的丘脑核团描绘,黑色箭头指示多发性硬化症病灶,这些病灶表现为沿丘脑内侧表面的条带,并投射到枕核 (Pul)、背内侧核 (MD) 和腹前核 (VA) 内,基于与分割的重叠。右栏显示一名多发性硬化症个体的丘脑扫描(轴位和冠状位切片),表明白质零化 MPRAGE 可以突出显示几个丘脑多发性硬化症病灶,这些病灶呈卵圆形(由白色箭头指示)或沿脑室表面更弥散(由白色箭头指示)。

    AV,腹前核;CM,中央中核;Hb,缰核;LGN,外侧膝状体核;MGN,内侧膝状体核;MTT,乳头丘脑束;VLa,腹外侧前核;VLp,腹外侧后核;VPL,腹后外侧核。

跨生命周期的丘脑成像

发育期

      神经发育疾病可能会影响丘脑,但其具体程度和涉及的核团仍然知之甚少。这主要是因为我们对健康发育过程中丘脑的变化了解不足,以及相关的分割挑战。目前,大多数丘脑发育研究采用手动分割丘脑及其核团的方法,因为现有的分割算法并未针对婴儿或儿童开发。因此,迄今为止,尚未成功标准化儿童丘脑的分割方法。特别是,由于婴儿和青少年之间丘脑体积测量存在显著差异,很难确定标准化应使用的年龄范围。因此,需要针对特定年龄范围的标准化协议,但目前尚不存在。此外,儿童的MRI扫描已知在不同年龄段对比度强度存在变化,这对分割算法造成了挑战。最后,儿童的扫描分辨率通常低于成人扫描,这增加了部分体积效应,使得在应用标准结构采集序列时分割方法面临更大挑战。因此,开发更适合儿童扫描的丘脑分割方法对于改善发育研究和我们对涉及丘脑的儿科疾病的理解至关重要。

老龄化

      先前的荟萃分析显示,整体丘脑体积随年龄增长而减少。然而,这种整体体积减少与特定丘脑核团变化之间的确切关系尚未确定。几项研究通过基于WMn(白质零化)MPRAGE或标准T1w采集序列的图谱分割,测量了老龄化对单个核团体积的不同影响。一些研究表明,涉及认知、视觉和听觉或前庭功能的丘脑核团的萎缩速度高于与运动和躯体感觉功能相关的核团,而另一些研究则显示出相反的模式,即涉及运动功能和枕核的核团萎缩更为显著。这些矛盾的结果再次强调了需要针对年龄调整的丘脑分割方法。因此,明确当前哪些丘脑分割方法最适合老龄化群体,并在未来的分割算法开发中考虑老龄化因素,将是非常重要的。

临床人群中的丘脑病变

丘脑内的改变

      尽管孤立的丘脑中风病变可能是研究丘脑及其特定核团在认知功能中作用的理想手段,但使用神经影像确定血管病变后哪些核团受损面临诸多问题。首先,中风引起的丘脑形态变化会挑战丘脑分割,因为病变可能会移动在相应图谱中用作参考的丘脑区域。据我们所知,现有的任何丘脑分割方法都未考虑这一点,尽管这显然会影响病变的位置及其相应的症状表现。一种提出的解决方案是使用对侧丘脑作为参考。然而,常见的(但缺乏充分记录的)双侧丘脑在形状、位置或核团大小上的个体内形态变异性,意味着这种方法的实用性尚未得到证明。其次,核团的精确位置及其血管化模式在不同个体之间存在较大变异性,这使得群体病变映射研究非常具有挑战性。第三,乳头丘脑束穿过丘脑通向前丘脑核团,因此可能是一个有用的解剖标志物;然而,丘脑的血管病变可能会损伤这一小束(尽管这一点尚未得到一致的检验)。

      导致严重丘脑萎缩的状况也会偏倚目前可用的丘脑分割方法。目前尚不清楚如何应对这些情况,研究人员和临床医生往往不得不在缺乏客观性能测量的情况下选择分割方法和神经影像图谱。这增加了基于工具复制先前结果能力选择工具的风险,存在循环推理和确认偏差的固有危险。减少这种偏差的一种潜在方法是使用现有的神经病理学发现作为“基准真理”,以指导研究人员或临床医生进行丘脑核分割方法。这些测量是在离体进行的,并且对组织进行了物理量化,因此与在体情况下对“相同人群”使用“相同工具箱”的做法不同,因为在体情况下进行物理测量实际上是不可能的。例如,在科尔萨科夫综合征(最常发生于酒精使用障碍患者)中,尸检研究系统地报告了背内侧核和前核受影响。一项使用基于 DTI 的丘脑分割的研究在科尔萨科夫综合征患者的体内复制了这些神经病理学发现,这为所选方法的可靠性提供了信心,但其他方法是否也能复制这些发现尚未得到检验。类似的推理可以应用于阿尔茨海默病研究,根据神经病理学数据,在该疾病的早期阶段,前丘脑中发现了神经纤维缠结。在体内,基于图谱的分割研究已经复制了这一发现。然而,与神经病理学数据相反,这些研究还显示了背内侧核和内侧膝状体丘脑核的变化。

      即使是丘脑的微观异常,如炎症变化,也会不同程度地影响丘脑核团。例如,丘脑对与多发性硬化症相关的病理生理机制特别脆弱,多发性硬化症引起的炎症变化可以影响丘脑的完整性。然而,目前尚不清楚炎症是否会改变丘脑核团的组织性质(因此改变其放射学特征),且基于聚类的分割方法预计会遇到一些困难。多发性硬化症患者的丘脑内可能也存在一些局灶性炎症病变,这些病变对基于解剖的分割准确性的影响尚未定义(如前所述对于缺血性病变)。在精神疾病(如早期精神病和慢性精神分裂症)中,DWI 也揭示了丘脑内的微观结构变化,显示早期精神病患者整个丘脑中广泛的扩散指标相关改变,以及异质性异常,尤其是在背内侧和后丘脑。总体而言,宏观结构和微观结构变化对丘脑核的影响仍远未明确,其潜在病理生理学与分割之间的关系亦然。

丘脑外的改变

      通过前向或后向变性中断丘脑-皮质投射也会影响丘脑分割。例如,多发性硬化症中的白质病变不仅会影响丘脑核团,还会影响它们与皮质的连接,从而影响使用结构性或功能性丘脑-皮质连接性的方法进行的丘脑分割。因此,在破坏白质完整性的病症中,如多发性硬化症和其他神经退行性疾病,这些方法可能不可靠。这一挑战也可能适用于与中风等中断丘脑投射的局灶性病变相关的病症。丘脑确实可能因涉及更直接(乳头丘脑束)甚至更间接(皮质)投射的梗塞引起的继发性变性而间接受损。多年来,这种远程效应已在体内整个丘脑中被捕捉到,但直到最近才开始探索中风对特定丘脑核团的远程效应。同样,值得注意的是,特定丘脑投射的断裂与受影响核团中局灶性铁沉积相关,这在磁敏感加权成像MRI和定量磁敏感成像中显现出来,并预计会使一些基于解剖的分割方法复杂化。多种神经退行性疾病中,铁水平也会在丘脑内广泛增加,这对基于解剖的分割方法构成了类似的挑战。尽管这些变化对症状管理和患者治疗具有明显的相关性,但它们如何影响丘脑分割方法仍大部分未知。

脑室扩大

     脑室扩大是老龄化的常见标志,并可能因影响脑脊液或邻近组织的病理生理变化而加剧。侧脑室或第三脑室的扩大可能会影响丘脑的形状,从而妨碍准确的丘脑分割过程由于内丘脑核团和背丘脑核团靠近脑室,脑室扩大会不成比例地影响这些核团。例如,据报道,多发性硬化症患者与脑脊液直接接触的后丘脑核和内侧丘脑核群的萎缩率更高,而外侧核群则相对保留。这也可以解释已报道的与脑膜炎症相关的丘脑损伤的“室管膜内”梯度,这种梯度对与第三脑室接触的丘脑核有更大的影响。然而,在测量靠近脑室的核团时(由于其形态不断变化)任何错误对这些发现的可能贡献尚不清楚。类似地,阿尔茨海默病中的整体萎缩会显著扩大侧脑室,这会妨碍可靠的丘脑核分割和描绘。有趣的是,对于前驱期阿尔茨海默病或具有阿尔茨海默病遗传风险的队列,研究结果似乎更加一致,这表明阿尔茨海默病中的脑室扩大确实会影响丘脑分割。正常压力脑积水患者的侧脑室也增大,这会导致脑室系统肿胀。脑室扩大也位列精神分裂症最可重复的发现之列。与此同时,越来越多的文献表明精神分裂症患者,有时甚至在其未受影响的一级亲属中,丘脑核发生了变化,这表明丘脑变化可能存在遗传因素。然而,由于脑室扩大(可能随着疾病进展而增加),关于如何在精神分裂症中区分丘脑变化和脑室变化,目前仍缺乏共识。总的来说,这个简要概述表明,相邻脑室的变化会影响丘脑形状,并使从丘脑核成像得出的临床推断产生偏差。

未来丘脑核目标

     目前大多数丘脑影像学研究都集中在那些最容易通过神经影像图谱描绘的核团上。这意味着目前有许多丘脑核团被“遗漏”或忽略,而它们可能与健康和疾病相关。例如,丘脑间粘合没有被纳入任何神经影像图谱,即使它连接着大约 70-80% 人的丘脑半球,并且在病灶后具有潜在的代偿作用。同样,包括髓板内核和菱形核在内的中线丘脑核,在动物研究中对其对记忆的贡献进行了广泛的研究,但在人类研究中,跨物种的同源性仍未确定。此外,中央外侧核是位于内侧核和外侧核之间的一个非常薄的带状核,它充当额纹状体网络中的中心节点。它已被确定为一个有希望的深部脑刺激 (DBS) 靶点,可以改善创伤性脑损伤后以及甚至昏迷患者的执行功能和生活质量,甚至意识。丘脑其他核团的 DBS 治疗已在多种神经系统疾病中显示出良好的治疗效果,包括震颤和癫痫。然而,DBS 的成功率因患者而异,这与使用现有方法直接观察和/或精确描绘每个患者的各个丘脑核的主要挑战有关。类似地,目前还没有基于图谱的前背侧核分割,尽管神经病理学表明它是阿尔茨海默病中最早受影响且最特异性受影响的丘脑核。目前,所有阿尔茨海默病神经影像学研究都将前背侧核包含在更大的前核群中,这可能导致低估了这种情况下丘脑核变化的特异性。在成瘾领域,对属于丘脑-岛叶回路的腹内侧核进行分割将非常重要,因为它们被认为在内感受和渴求中起着关键作用。最后,在精神分裂症中,丘脑网状核越来越受到关注,因为动物模型表明该核特别容易受到疾病发展的影响。因此,迫切需要开发在人脑成像中研究丘脑网状核的技术。

     从这些少数例子中,应当清楚地看到,我们目前仅在研究人类丘脑核团“冰山一角”,这使我们对丘脑在健康大脑中的贡献及其临床相关变化的理解不完整甚至存在偏见。

迈向更好的丘脑核分割

      正如我们所讨论的,目前的丘脑核分割方法限制了我们在健康与疾病中研究丘脑真实重要性的能力。如果我们希望更好地理解丘脑核的具体角色及其对认知发育、健康老龄化、疾病进展和症状表现的贡献,就需要更精确、稳健和标准化的神经影像方法。幸运的是,最近在MRI采集和分割方法方面的发展有望在未来提供更深入的丘脑见解。因此,现在提出一个迈向更好丘脑核神经影像学的路线图以及一种更标准化的丘脑核识别方法是及时的。基于我们对当前分割技术及其研究和临床影响的简要回顾,我们建议社区应采取以下步骤,可能按照以下优先顺序进行:

      首先,我们建议成立一个多学科小组——由丘脑组织学、显微镜学和神经影像学方面的专家组成——以建立丘脑的“基准真理”,例如丘脑核的数量、位置和形态、命名法以及个体内和个体间的核团变异性。在这里,我们借鉴了海马子区小组(Hippocampal Subfields Group)的经验,该小组在制定海马及其子区分割的共识协议方面走在前列。重要的是,海马子区小组的工作基于欧洲阿尔茨海默病联盟(European Alzheimer’s Disease Consortium)和阿尔茨海默病神经影像学倡议(Alzheimer’s Disease Neuroimaging Initiative)的共同努力,汇集国际专家就海马边界和分割协议达成一致,旨在统一MR成像海马的手动分割,最终创建了统一的海马协议(Harmonized Hippocampal Protocol)。海马子区小组在基于欧洲阿尔茨海默病联盟和阿尔茨海默病神经影像学倡议的共同努力基础上,成功地深入研究了海马子区的定位和关键标志物的共识。然而,仍然存在关键挑战,例如需要(1)比较内侧颞叶区域的不同组织学划分,(2)在不同环境中统一识别海马子区域,以及(3)在临床环境中建立统一的体内MRI分割协议。我们认为,丘脑也存在类似的挑战,丘脑的研究远不如海马,但对众多脑功能和临床综合征的重要性更大。所提议的丘脑多学科小组的目标不仅是缩小丘脑组织学与神经影像学之间的转化知识差距,还包括就组织学数据集之间的差异和相似性达成一致并清晰识别,商定解决差异的方案,并共同努力制定统一的体内MRI分割协议。事实上,我们相信,只要问题是单独处理而不是集体努力,矛盾将持续存在。后者将确保研究沿着一致的思路前进,使偏见和不一致性更容易被识别和解决。此外,由于确定和巩固基准真理是TANGO小组的使命之一,我们将采用正式的共识方法来定义边界。我们已确定的一个潜在解决方案是让几位丘脑细胞结构学专家分别分割高分辨率的尸检后数据。然后,将这些分割结果进行定性比较(通过专家之间对分割结果的评分)以及定量比较(通过测量叠加、Dice系数、测试-重测和组内相关系数)。在专家之间无法达成一致的情况下,可以考虑对某些复杂划分采用概率方法。然而,对于体内获取的高分辨率分割数据仍将面临挑战,因为这些数据必然会受到运动伪影的影响,直接影响特定核团定位的精确性。

     其次,我们建议为人类神经影像中可识别的特定丘脑核建立统一的命名法。我们提议成立一个共识小组,定义当前在健康和病理群体中可可靠成像的丘脑核。该小组还将提出一份“目标”丘脑核名单,这些核团目前尚未包含在神经影像图谱中,但应被添加以对未来跨领域研究产生重要影响。该核团目标清单将指导未来的研究以推动该领域的发展,包括为难以成像的核团开发特定的MRI采集序列。这些序列将首先在尸检后数据集中进行测试,然后在健康人群和患病人群中进行体内验证。我们还建议,最终成为“标准”的全丘脑高分辨率图像应被纳入所有处理丘脑核成像的研究协议中。其理念是使用这些图像在全球各影像中心建立一个共同的平台,从一个公认的参考图像出发,逐步通过常规和人工智能技术迭代并增量添加丘脑核的划分,最终生成一个稳健的图谱。更具体地说,随着影像数据库的不断扩大,通过机器学习和深度学习算法管理丘脑图谱中复杂丘脑核的迭代添加将变得可行。

     定义超出先进MRI方法范围的小核团的可能位置本身就具有价值。它提醒我们,从较大邻近结构中获取的信号很可能代表来自较大可见结构和较小邻近结构的混合信号。这将为BOLD激活模式的解释带来更多细微差别。核团位置的信息还可以帮助驱动结构扫描的MRI优化,希望能够识别当前MRI技术无法覆盖的结构。

     第三,我们建议为一般神经影像、特定核团成像或特定研究人群成像制定“最佳实践”丘脑核MRI采集序列和协议的建议。建立这些MRI采集指南将整体上改善丘脑核成像,并使人类丘脑MRI采集方法标准化,从而能够建立大规模、开源、金标准的人类丘脑核数据集。例如,研究中心应报告其获取数据所进行的质量控制类型,突出任何在这些质量检查中观察到的差异,包括因运动、磁敏感性、个体间变异性以及当使用相同序列但扫描仪制造商不同所观察到的差异所导致的显著伪影。这些检查不应仅仅导致简单的接受或拒绝数据的二元决策,而应包含数据质量的分级,以便在丘脑核的划分中考虑数据质量的变异性。这些数据驱动的方法可以通过专家驱动的方法进行补充:例如,丘脑神经解剖学专家可以识别不同研究中丘脑核划分的一致性和差异性,并利用这些信息建立其划分的共识标志物。

     第四,我们建议为一般使用、特定核团成像或特定研究人群成像创建最佳实践的丘脑核分割算法和/或工具箱。这将明确哪些算法和/或工具箱最适合不同年龄组、病理状态或干预措施(如DBS)。这一步骤将改善特定丘脑核的数据和研究输出,并反过来改善元分析方法,以确定不同人群中具体丘脑核的角色。显然,与特定任务或条件相关的丘脑核的结构和/或功能改变将取决于分析核团所使用的成像模式。例如,fMRI研究侧重于功能动态,因此可能优先基于连接模式进行划分,而不是严格基于组织学边界。因此,仅基于组织学采用刚性划分策略可能会忽视结构与功能之间的相互作用,而这种相互作用在不同状态和条件下有所变化。鉴于这些考虑,在制定核团分割的最佳实践指南时,采用一种灵活的、多层次的方法,以适应当前成像技术固有的限制和多样化的方法论,并超越简单的结构-功能关联,显得尤为明智。

     第五,我们建议为丘脑核收集大型、开源、金标准的数据集。获取此类数据集——例如,通过确保所有影像中心在其采集序列中包含一种通用的MRI序列——将通过提供基准数据集用于比较和/或验证或用于开发新的分割方法来促进丘脑核研究。这一操作还将建立在影像中心之间共享使用不同方法和MRI强度获取的数据集时的质量保证。

     最后,我们建议发布关于开发和验证新采集序列或丘脑核分割方法的指南。我们建议以德尔菲方法组建一个国际共识小组,以制定这些指南并促进最前沿的丘脑核研究发展。

结论

      我们坚信,上述路线图步骤不仅将促进我们对正常和病理条件下丘脑结构和功能的更好理解,还将加深我们对功能性丘脑在脑功能中的重要性的认识,以及我们如何调节丘脑功能以治疗神经和精神疾病。现在是将丘脑核作为任何神经影像研究中的独立脑结构确立的时机,并承认它们在不同脑活动过程中的差异性参与。我们呼吁任何有兴趣参与这一过程的读者联系TANGO联盟以获取更多信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值