深度学习
文章平均质量分 91
思影科技
思影科技
展开
-
基于原始影像数据的深度学习模型预测脑龄可获得可靠的遗传生物标志物
基于机器学习对神经影像数据进行分析可以准确预测健康人的年龄。预测年龄与健康大脑的年龄的偏差被证明与认知障碍和疾病有关。在这里,我们基于深度学习的预测建模方法,特别是卷积神经网络(CNN),进一步测试了脑龄预测的影响因素,并表明脑龄可以作为大脑发育过程中的个体差异的生物标志物,该模型可应用于数据预处理后的结构像和原始T1加权MRI结构数据。首先,作者们用一个健康成人的大数据集来证明CNN模型预测大脑年龄的准确性(N=2001);接下来,通过单卵和双卵女性双胞胎的样本验证预测的遗传性特征(N= 62);第三原创 2021-07-05 10:39:15 · 2731 阅读 · 3 评论 -
基于机器学习的脑电病理学诊断
机器学习(Machine learning, ML)方法有可能实现临床脑电(Electroencephalography, EEG)分析的自动化。它们可以分为基于特征的方法(使用手工制作的特征)和端到端的方法(使用学习的特征)。以往对EEG病理解码的研究通常分析了有限数量的特征、解码器或两者兼而有之。对于I)更详细的基于特征的EEG分析,以及II)两种方法的深入比较,我们首先开发了一个全面的基于特征的框架,然后将该框架与最先进的端到端方法进行比较。为此,我们将提出的基于特征的框架和深度神经网络(包括EEG优原创 2021-05-14 15:34:24 · 2463 阅读 · 0 评论 -
用于临床心理学和精神病学的机器学习方法
用于临床心理学和精神病学的机器学习方法特别着重于从多维数据集学习统计函数,以对个体进行普适性的预测。机器学习方法有可能利用临床和生物学数据来更好地帮助医生做出对精神疾病患者的诊断,预后和治疗相关的决策,本文目的就在于提供一种更便于理解的途径,以了解这种方法在未来实践中的重要性。为此,我们对当前的心理健康研究统计范式的局限性提出了批评,并对临床研究中使用的关键机器学习方法进行了介绍。本文提出从当前的初步结果看,机器学习在临床心理学和精神病学的发展是令人鼓舞的,但仍旧需要推广机器学习方法并进一步证明其有效性。本原创 2021-05-10 16:06:49 · 2436 阅读 · 0 评论