HDU 4734 F(x)(数位DP)

题目链接:点击打开链接

题意:F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,Ai是十进制数位,给出a、b,求区间[0,b]内满足f(i)=f(a)的i的个数。

思路:数位DP,dp[pos][sum]表示在!limit情况下,第pos个位置及其以后的数位的f(x)值为sum的情况有多少种。每组测试数据,先算出f(a),再去数位DP,逐位去安排数字,在f(a)的值里减去相应的值,再进行下一位。

// HDU 4734 F(x).cpp 运行/限制:31ms/1000ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
int dig[10],dp[10][5000];
int getSum(int x) {
	if (!x) return 0;
	return (getSum(x / 10) << 1) + x % 10;
}
int getDig(int x) {
	int top = 0;
	while (x) {
		dig[top++] = x % 10;
		x /= 10;
	}
	return top;
}
int DP(int pos, int sum, int limit) {
	if (pos == -1) return sum >= 0;
	if (sum == 0) return 1;
	if (sum < 0) return 0;
	if (!limit && dp[pos][sum] != -1) return dp[pos][sum];
	int upper = limit ? dig[pos] : 9;
	int re = 0;
	for (int i = 0; i <= upper; i++) {
		re += DP(pos - 1, sum - i * (1 << pos), limit && i == dig[pos]);
	}
	if (!limit) dp[pos][sum] = re;
	return re;
}
int main() {
	int a, b, t, cases = 1;
	scanf("%d", &t);
	memset(dp, -1, sizeof(dp));//优化 !limit情况下,dp[pos][sum]的取值只和数字本身有关,和a,b取值无关
	while (t--) {
		scanf("%d%d", &a, &b);
		int f_a = getSum(a);//f(a)
		int upper = getDig(b);
		printf("Case #%d: %d\n", cases++, DP(upper - 1,f_a,1));
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值