题目链接:点击打开链接
题意:F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,Ai是十进制数位,给出a、b,求区间[0,b]内满足f(i)=f(a)的i的个数。
思路:数位DP,dp[pos][sum]表示在!limit情况下,第pos个位置及其以后的数位的f(x)值为sum的情况有多少种。每组测试数据,先算出f(a),再去数位DP,逐位去安排数字,在f(a)的值里减去相应的值,再进行下一位。
// HDU 4734 F(x).cpp 运行/限制:31ms/1000ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
int dig[10],dp[10][5000];
int getSum(int x) {
if (!x) return 0;
return (getSum(x / 10) << 1) + x % 10;
}
int getDig(int x) {
int top = 0;
while (x) {
dig[top++] = x % 10;
x /= 10;
}
return top;
}
int DP(int pos, int sum, int limit) {
if (pos == -1) return sum >= 0;
if (sum == 0) return 1;
if (sum < 0) return 0;
if (!limit && dp[pos][sum] != -1) return dp[pos][sum];
int upper = limit ? dig[pos] : 9;
int re = 0;
for (int i = 0; i <= upper; i++) {
re += DP(pos - 1, sum - i * (1 << pos), limit && i == dig[pos]);
}
if (!limit) dp[pos][sum] = re;
return re;
}
int main() {
int a, b, t, cases = 1;
scanf("%d", &t);
memset(dp, -1, sizeof(dp));//优化 !limit情况下,dp[pos][sum]的取值只和数字本身有关,和a,b取值无关
while (t--) {
scanf("%d%d", &a, &b);
int f_a = getSum(a);//f(a)
int upper = getDig(b);
printf("Case #%d: %d\n", cases++, DP(upper - 1,f_a,1));
}
return 0;
}