合成孔径雷达(SAR)成像模式详解
目录
简介
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种高分辨率成像雷达系统,能够在各种天气条件和光照条件下对地面进行精确成像。通过移动平台(如卫星或飞机)上的天线运动,SAR能够合成出比物理天线孔径更大的“合成孔径”,从而提高成像分辨率。SAR广泛应用于地球观测、军事侦察、环境监测、灾害评估等领域。
合成孔径雷达的基本原理
雷达方程
雷达系统的性能通常由雷达方程描述,它反映了发射功率、目标特性、传播损耗等因素对接收信号强度的影响。基本雷达方程为:
P r = P t G 2 λ 2 σ ( 4 π ) 3 R 4 L P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4 L} Pr=(4π)3R4LPtG2λ2σ
其中:
- P r P_r Pr :接收功率
- P t P_t Pt :发射功率
- G G G :天线增益
- λ \lambda λ :雷达波长
- σ \sigma σ :目标雷达截面积
- R R R :雷达与目标的距离
- L L L :系统损耗
合成孔径概念
在SAR中,雷达天线随着平台的移动沿飞行轨道前进,雷达从多个不同位置发射和接收信号。这些多位置的回波信号通过信号处理技术进行合成,等效于使用一个非常长的天线孔径进行成像。这个“合成孔径”使得SAR能够在方位向上实现高分辨率。
分辨率分析
SAR的分辨率分为两部分:距离向分辨率和方位向分辨率。
-
距离向分辨率:由雷达脉冲的带宽决定,公式为:
Δ R = c 2 B \Delta R = \frac{c}{2B} ΔR=2Bc
其中, c c c 为光速, B B B 为脉冲带宽。
-
方位向分辨率:由合成孔径长度决定,公式为:
Δ L a = λ R 2 L a \Delta L_a = \frac{\lambda R}{2L_a} Δ