L1-3 宇宙无敌加法器(20 分)
地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
输出样例:
7201
思路:模拟加法运算即可,不过需要注意的是,此题涉及到不同进制,注意细节就好了。
#include <bits/stdc++.h>
using namespace std;
int main(){
string st;
string x,y;
string re;
re.clear();
cin >> st >> x >> y;
reverse(st.begin(),st.end());
reverse(x.begin(),x.end());
reverse(y.begin(),y.end());
int i = 0,j = 0,te = 0;
int sum,dig;
while(i < x.size() && j < y.size()){
sum = (x[i] - '0') + (y[j] - '0') + te;
dig = st[i] - '0';
if(dig == 0) dig = 10;
re.append(1,'0' + (sum % dig));
te = sum / dig;
i++;
j++;
}
if(x.size() > y.size()){
while(i < x.size()){
sum = (x[i] - '0') + te;
dig = st[i] - '0';
if(dig == 0) dig = 10;
re.append(1,'0' + (sum % dig));
te = sum / dig;
i++;
}
}
if(x.size() < y.size()){
while(j < y.size()){
sum = (y[j] - '0') + te;
dig = st[j] - '0';
if(dig == 0) dig = 10;
re.append(1,'0' + (sum % dig));
te = sum / dig;
j++;
}
}
if(te > 0){
if(i == st.size() || j == st.size()){
while(te){
re.append(1,'0' + (te % 10));
te /= 10;
}
}
else{
while(j < st.size() && te){
dig = st[j] - '0';
if(dig == 0) dig = 10;
re.append(1,'0' + (te % dig));
te /= 10;
j++;
}
while(te){
re.append(1,'0' + (te % 10));
te /= 10;
}
}
}
reverse(re.begin(),re.end());
int start = 0;
while(start + 1 < re.size() && re[start] == '0'){
start++;
}
while(start < re.size()){
cout << re[start++];
}
cout << endl;
return 0;
}