题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4405
题目大意:
跳棋有0~n个格子,每个格子X可以摇一次色子,色子有六面p(1=<p<=6),概率相等,可以走到X+p的位置,有些格子不需要摇色子就可以直接飞过去。问从0出发到达n或超过n摇色子的次数的期望。
解题思路:
简单概率dp,去年网络赛的一道水题,当时水平太差没过。
dp[i]表示从i出发到达最终位置的次数期望。
转移方程当i需要摇色子时,dp[i]=Σ(1+dp[i+j])(1<=j<=6);否则dp[i]=dp[jump[i]] 表示从i能够跳得到的最大位置。
预处理后面的6个位置,直接转移就行。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#define eps 1e-6
#define INF 0x3fffffff
#define PI acos(-1.0)
#define ll __int64
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define Maxn 110000
#define Maxm 1100
double dp[Maxn];
int path[Maxn],jump[Maxn],n,m;
int main()
{
while(scanf("%d%d",&n,&m)&&(n+m))
{
memset(path,-1,sizeof(path));
memset(jump,-1,sizeof(jump));//jump[i]表示从i能够飞的最大的位置
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
path[a]=b; //飞一步到达的位置
}
for(int i=n;i>=1;i--)
{
if(path[i]!=-1)
{
int j=path[i];
if(jump[j]!=-1)
jump[i]=jump[j];
else
jump[i]=j;
}
}
for(int i=0;i<6;i++)
dp[n+i]=0;
for(int i=n-1;i>=0;i--)
{
if(jump[i]!=-1)
dp[i]=dp[jump[i]];
else
{
double tt=0;
for(int j=1;j<=6;j++)
{
tt+=dp[i+j]*(1.0/6.0);
}
dp[i]=1+tt;
}
}
printf("%.4f\n",dp[0]);
}
return 0;
}