hdu-4398-数位dp-X mod f(x)

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4389

题目大意:

求给定区间内,各位数字之和能被该数整除的数的个数。

解题思路:

数位dp。

注意用记忆化搜索做的时候,要保证记忆的状态能够重用并且不冲突,重要的是唯一确定性。

dp[i][j][k][l]表示后面还有i位,前面所有位数和为j,前面各位组成的数对l求模的余数为k,满足题目要求的数的种数。

本题的关键是,加一维mod数,使求余的数固定,以缩小存储的范围,同时满足唯一确定性,即可重用。

代码:

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF (1<<30)
#define PI acos(-1.0)
using namespace std;

int dp[10][82][82][82];
int pos[15];

int dfs(int cur,int lastf,int lastx,int mod,int flag)
{
   if(!cur)
   {
      if(lastx==0&&lastf==mod)
         return 1;
      return 0;
   }

   if(!flag&&dp[cur][lastf][lastx][mod]!=-1)
      return dp[cur][lastf][lastx][mod];

   int Max=flag?pos[cur]:9;
   int ans=0;

   for(int i=0;i<=Max;i++)
   {
      ans+=dfs(cur-1,lastf+i,(lastx*10+i)%mod,mod,flag&&i==Max);
   }
   if(!flag)
      dp[cur][lastf][lastx][mod]=ans;

   return ans;
}

int Cal(int n)
{
   int tt=0;

   while(n)
   {
      ++tt;
      pos[tt]=n%10;
      n/=10;
   }

   int temp=0;
   for(int i=1;i<=81;i++)
      temp+=dfs(tt,0,0,i,1);  //把各位数之和为i的满足题意数的个数全部找出来,简化的关键
   return temp;
}

int main()
{
   int t,a,b;

   scanf("%d",&t);
   memset(dp,-1,sizeof(dp));
   for(int ca=1;ca<=t;ca++)
   {
      scanf("%d%d",&a,&b);
      printf("Case %d: %d\n",ca,Cal(b)-Cal(a-1));
   }

   return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值