题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4389
题目大意:
求给定区间内,各位数字之和能被该数整除的数的个数。
解题思路:
数位dp。
注意用记忆化搜索做的时候,要保证记忆的状态能够重用并且不冲突,重要的是唯一确定性。
dp[i][j][k][l]表示后面还有i位,前面所有位数和为j,前面各位组成的数对l求模的余数为k,满足题目要求的数的种数。
本题的关键是,加一维mod数,使求余的数固定,以缩小存储的范围,同时满足唯一确定性,即可重用。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF (1<<30)
#define PI acos(-1.0)
using namespace std;
int dp[10][82][82][82];
int pos[15];
int dfs(int cur,int lastf,int lastx,int mod,int flag)
{
if(!cur)
{
if(lastx==0&&lastf==mod)
return 1;
return 0;
}
if(!flag&&dp[cur][lastf][lastx][mod]!=-1)
return dp[cur][lastf][lastx][mod];
int Max=flag?pos[cur]:9;
int ans=0;
for(int i=0;i<=Max;i++)
{
ans+=dfs(cur-1,lastf+i,(lastx*10+i)%mod,mod,flag&&i==Max);
}
if(!flag)
dp[cur][lastf][lastx][mod]=ans;
return ans;
}
int Cal(int n)
{
int tt=0;
while(n)
{
++tt;
pos[tt]=n%10;
n/=10;
}
int temp=0;
for(int i=1;i<=81;i++)
temp+=dfs(tt,0,0,i,1); //把各位数之和为i的满足题意数的个数全部找出来,简化的关键
return temp;
}
int main()
{
int t,a,b;
scanf("%d",&t);
memset(dp,-1,sizeof(dp));
for(int ca=1;ca<=t;ca++)
{
scanf("%d%d",&a,&b);
printf("Case %d: %d\n",ca,Cal(b)-Cal(a-1));
}
return 0;
}