复习关于军棋AI编写的思路

本文介绍了一个在计算机博弈大赛中获奖的军棋AI项目。该项目采用最大最小值搜索树及α-β剪枝技术实现智能决策,并详细阐述了AI运行逻辑、决策过程和技术难点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.这是一个什么项目

这是一个用于计算机博弈大赛军棋比赛中的一个军棋AI,在2018年计算机博弈大赛中获得三等奖,在2019年计算机博弈大赛中获得二等奖。

2.用到了什么技术,为什么用这项技术(以及每项技术很细的点以及扩展)

最大最小值搜索树,α-β剪枝。

3.过程中遇到了什么问题,怎么解决的。

 

项目整理:

AI运行逻辑:由裁判程序发送一段一段的字符串指令,然后对指令进行分析后分别进行不同的操作。

收到一系列请求程序名称,队员信息的指令后返回信息。

收到开始指令后初始化棋盘信息,棋子位置,初始化概率表。

while(两方的旗子都存在){

       收到对方行棋指令后,刷新概率表,刷新棋盘,更新棋盘棋子,调用决策函数,判断31步,下棋

       收到我方下棋后裁判的反馈结果,刷新概率表,刷新棋盘,更新棋盘棋子,判断31步

}

游戏结束

 

现在详述决策函数

设置一个for循环最大为4,最小从1开始,最开始只进行1次最大最小值搜索树,第二次循环变为进行2层深度,最终变成4层深度,如果超时或者必胜的时候跳出循环

最大最小值搜索树函数和α-β剪枝:首先将必胜的条件列出,如果必胜直接返回最高价值。

通过一个函数计算出所有可能的走法保存到一个数组中,然后使用快排基于每个走法的价值进行排序。深搜模拟每一种走法。每一层为自己或者敌人,叶子节点评估函数返回局面得分。最后通过函数得出最佳走法

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值